-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtimeseries_flights.py
137 lines (100 loc) · 4.77 KB
/
timeseries_flights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import torch
import torch.nn as nn
from sklearn.preprocessing import MinMaxScaler
from torch.utils.data import Dataset, DataLoader
class FlightDataset(Dataset):
def __init__(self, passengers):
self.train_window = 12
self.passengers = passengers
self.scaler = MinMaxScaler(feature_range=(-1, 1))
self.passengers_normalized = self.scaler.fit_transform(self.passengers.reshape(-1, 1))
self.passengers_normalized = torch.FloatTensor(self.passengers_normalized)
self.passengers_sequences = self._create_inout_sequences(self.passengers_normalized)
def _create_inout_sequences(self, input_data):
inout_seq = []
length = len(input_data)
for i in range(length - self.train_window):
train_seq = input_data[i:i + self.train_window]
train_label = input_data[i + self.train_window:i + self.train_window + 1]
inout_seq.append((train_seq, train_label))
return inout_seq
def __getitem__(self, item):
return self.passengers_sequences[item]
def __len__(self):
return len(self.passengers_sequences)
class LSTM(nn.Module):
def __init__(self, input_size=1, hidden_layer_size=100, output_size=1, num_layers=1):
super().__init__()
self.hidden_layer_size = hidden_layer_size
self.output_size = output_size
self.input_size = input_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, self.hidden_layer_size, num_layers=self.num_layers, batch_first=True)
self.linear = nn.Linear(self.hidden_layer_size, self.output_size)
self.hidden_cell = None
def forward(self, input_seq):
# model_input_seq = input_seq.view(len(input_seq), 1, -1)
lstm_out, self.hidden_cell = self.lstm(input_seq, self.hidden_cell)
predictions = self.linear(lstm_out.view(input_seq.shape[0], input_seq.shape[1], -1))
return predictions[:, -1]
def reset(self, batch_size, device):
self.hidden_cell = (torch.zeros(self.num_layers, batch_size, self.hidden_layer_size).to(device),
torch.zeros(self.num_layers, batch_size, self.hidden_layer_size).to(device))
def build_dataset(test_data_size=12):
flights = sns.load_dataset("flights")
all_data = flights["passengers"].values.astype(float)
train_data = all_data[:-test_data_size]
test_data = all_data[-test_data_size:]
return FlightDataset(train_data), FlightDataset(test_data)
def train(train_dataset, epochs=150, batch_size=12, lr=0.001, device="cuda"):
model = LSTM().to(device)
loss_function = nn.MSELoss().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
for epoch_index in range(epochs):
for _, sample in enumerate(loader):
seq, labels = sample
optimizer.zero_grad()
model.reset(batch_size, device)
y_pred = model(seq.to(device))
single_loss = loss_function(y_pred.view(batch_size, 1, 1), labels.to(device))
single_loss.backward()
optimizer.step()
if epoch_index % 25 == 1:
print(f"epoch: {epoch_index:3} loss: {single_loss.item():10.8f}")
print(f"epoch: {epoch_index:3} loss: {single_loss.item():10.10f}")
return model
def validate(train_dataset, model, train_window=12, fut_pred=12, device="cuda"):
model.eval()
test_seq, test_label = train_dataset[-1]
test_seq = test_seq.view(-1).tolist()
for _ in range(fut_pred):
seq = torch.FloatTensor(test_seq[-train_window:]).to(device)
with torch.no_grad():
model.reset(1, device)
prediction = model(seq.view(1, train_window, 1))
test_seq.append(prediction[0].cpu())
predictions = np.array(test_seq[-fut_pred:]).reshape(-1, 1)
actual_predictions = train_dataset.scaler.inverse_transform(predictions)
actual_predictions = actual_predictions.reshape(-1, 1)
return actual_predictions
def display_predictions(train_dataset, validation_dataset, predictions):
x = np.arange(132, 144, 1)
plt.title("Month vs Passenger")
plt.ylabel("Total Passengers")
plt.grid(True)
plt.autoscale(axis="x", tight=True)
plt.plot(train_dataset.passengers.tolist() + validation_dataset.passengers.tolist())
plt.plot(x, predictions)
plt.savefig("passengers.png")
def main(**kwargs):
train_dataset, validate_dataset = build_dataset()
model = train(train_dataset, **kwargs)
predictions = validate(train_dataset, model)
display_predictions(train_dataset, validate_dataset, predictions)
if __name__ == "__main__":
main(device="cuda", lr=0.00003, epochs=5000)