-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBloom.ino
822 lines (665 loc) · 21.8 KB
/
Bloom.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
/*
* Bloom: https://github.com/evilgeniuslabs/bloom
* Copyright (c) 2015 Jason Coon, Evil Genius Labs
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "FastLED.h"
FASTLED_USING_NAMESPACE;
#include "GradientPalettes.h"
#include "application.h"
SYSTEM_THREAD(ENABLED);
// allow us to use itoa() in this scope
extern char* itoa(int a, char* buffer, unsigned char radix);
#define ARRAY_SIZE(A) (sizeof(A) / sizeof((A)[0]))
#define ONE_DAY_MILLIS (24 * 60 * 60 * 1000)
#define NUM_LEDS 30
static const int numLeds = NUM_LEDS;
CRGB leds[NUM_LEDS];
typedef uint8_t (*SimplePattern)();
typedef SimplePattern SimplePatternList[];
typedef struct { SimplePattern drawFrame; String name; } PatternAndName;
typedef PatternAndName PatternAndNameList[];
// List of patterns to cycle through. Each is defined as a separate function below.
const PatternAndNameList patterns =
{
{ pride, "Pride" },
{ colorWaves, "Color Waves" },
{ rainbowTwinkles, "Rainbow Twinkles" },
{ snowTwinkles, "Snow Twinkles" },
{ cloudTwinkles, "Cloud Twinkles" },
{ incandescentTwinkles, "Incandescent Twinkles" },
{ rainbow, "Rainbow" },
{ rainbowWithGlitter, "Rainbow With Glitter" },
{ rainbowSolid, "Solid Rainbow" },
{ confetti, "Confetti" },
{ sinelon, "Sinelon" },
{ bpm, "Beat" },
{ juggle, "Juggle" },
{ fire, "Fire" },
{ water, "Water" },
{ draw, "Draw" },
{ showSolidColor, "Solid Color" }
};
int patternCount = ARRAY_SIZE(patterns);
// variables exposed via Particle cloud API (Spark Core is limited to 10)
int brightness = 32;
int patternIndex = 0;
String patternNames = "";
int power = 1;
int r = 0;
int g = 0;
int b = 255;
uint8_t gHue = 0; // rotating "base color" used by many of the patterns
CRGB solidColor = CRGB(r, g, b);
CRGBPalette16 IceColors_p = CRGBPalette16(CRGB::Black, CRGB::Blue, CRGB::Aqua, CRGB::White);
uint8_t paletteIndex = 0;
// List of palettes to cycle through.
CRGBPalette16 palettes[] =
{
RainbowColors_p,
/*RainbowStripeColors_p,*/
CloudColors_p,
OceanColors_p,
ForestColors_p,
HeatColors_p,
LavaColors_p,
PartyColors_p,
IceColors_p,
};
uint8_t paletteCount = ARRAY_SIZE(palettes);
CRGBPalette16 currentPalette(CRGB::Black);
CRGBPalette16 targetPalette = palettes[paletteIndex];
// ten seconds per color palette makes a good demo
// 20-120 is better for deployment
#define SECONDS_PER_PALETTE 10
void setup()
{
FastLED.addLeds<WS2811, TX>(leds, NUM_LEDS);
FastLED.setCorrection(Typical8mmPixel);
FastLED.setBrightness(brightness);
FastLED.setDither(false);
fill_solid(leds, NUM_LEDS, CRGB::Black);
FastLED.show();
// Serial.begin(9600);
// load settings from EEPROM
brightness = EEPROM.read(0);
if(brightness < 1)
brightness = 1;
else if(brightness > 255)
brightness = 255;
FastLED.setBrightness(brightness);
FastLED.setDither(brightness < 255);
patternIndex = EEPROM.read(1);
if(patternIndex < 0)
patternIndex = 0;
else if (patternIndex >= patternCount)
patternIndex = patternCount - 1;
r = EEPROM.read(2);
g = EEPROM.read(3);
b = EEPROM.read(4);
if(r == 0 && g == 0 && b == 0) {
r = 0;
g = 0;
b = 255;
}
solidColor = CRGB(r, b, g);
Particle.function("patternIndex", setPatternIndex); // sets the current pattern index, changes to the pattern with the specified index
Particle.function("variable", setVariable); // sets the value of a variable, args are name:value
Particle.variable("power", power);
Particle.variable("brightness", brightness);
Particle.variable("patternIndex", patternIndex);
Particle.variable("r", r);
Particle.variable("g", g);
Particle.variable("b", b);
Particle.variable("numLeds", numLeds);
patternNames = "[";
for(uint8_t i = 0; i < patternCount; i++)
{
patternNames.concat("\"");
patternNames.concat(patterns[i].name);
patternNames.concat("\"");
if(i < patternCount - 1)
patternNames.concat(",");
}
patternNames.concat("]");
Particle.variable("patternNames", patternNames);
}
void loop()
{
if(power < 1) {
fill_solid(leds, NUM_LEDS, CRGB::Black);
FastLED.show();
FastLED.delay(15);
return;
}
uint8_t delay = patterns[patternIndex].drawFrame();
// send the 'leds' array out to the actual LED strip
FastLED.show();
// insert a delay to keep the framerate modest
FastLED.delay(delay);
// blend the current palette to the next
EVERY_N_MILLISECONDS(40) {
nblendPaletteTowardPalette(currentPalette, targetPalette, 16);
}
EVERY_N_MILLISECONDS( 40 ) { gHue++; } // slowly cycle the "base color" through the rainbow/palette
// slowly change to a new palette
EVERY_N_SECONDS(SECONDS_PER_PALETTE) {
paletteIndex++;
if (paletteIndex >= paletteCount) paletteIndex = 0;
targetPalette = palettes[paletteIndex];
};
}
int setVariable(String args)
{
if(args.startsWith("pwr:")) { // pwr: 1
return setPower(args.substring(4));
}
else if (args.startsWith("brt:")) { // brt: 255
return setBrightness(args.substring(4));
}
else if (args.startsWith("r:")) { // r: 255
r = parseByte(args.substring(2));
solidColor.r = r;
EEPROM.write(2, r);
patternIndex = patternCount - 1;
return r;
}
else if (args.startsWith("g:")) { // g: 255
g = parseByte(args.substring(2));
solidColor.g = g;
EEPROM.write(3, g);
patternIndex = patternCount - 1;
return g;
}
else if (args.startsWith("b:")) { // b: 255
b = parseByte(args.substring(2));
solidColor.b = b;
EEPROM.write(4, b);
patternIndex = patternCount - 1;
return b;
}
else if (args.startsWith("c:")) { // c:255,255,255
return setColor(args.substring(2));
}
else if (args.startsWith("i:")) { // i:19,255,255,255
return setPixel(args.substring(2));
}
return -1;
}
int setPower(String args)
{
power = args.toInt();
if(power < 0)
power = 0;
else if (power > 1)
power = 1;
return power;
}
int setBrightness(String args)
{
brightness = args.toInt();
if(brightness < 1)
brightness = 1;
else if(brightness > 255)
brightness = 255;
FastLED.setBrightness(brightness);
FastLED.setDither(brightness < 255);
EEPROM.write(0, brightness);
return brightness;
}
int setColor(String args)
{
char inputStr[12];
args.toCharArray(inputStr, 12);
char *p = strtok(inputStr, ",");
r = atoi(p);
p = strtok(NULL,",");
g = atoi(p);
p = strtok(NULL,",");
b = atoi(p);
p = strtok(NULL,",");
solidColor.r = r;
solidColor.g = g;
solidColor.b = b;
patternIndex = patternCount - 1;
EEPROM.write(2, r);
EEPROM.write(3, g);
EEPROM.write(4, b);
return 0;
}
int setPixel(String args)
{
char inputStr[16];
args.toCharArray(inputStr, 16);
char *p = strtok(inputStr, ",");
int i = atoi(p);
p = strtok(NULL,",");
int ir = atoi(p);
p = strtok(NULL,",");
int ig = atoi(p);
p = strtok(NULL,",");
int ib = atoi(p);
p = strtok(NULL,",");
if(i < NUM_LEDS) {
leds[i] = CRGB(ir, ig, ib);
patternIndex = patternCount - 2;
return 0;
}
return -1;
}
byte parseByte(String args)
{
int c = args.toInt();
if(c < 0)
c = 0;
else if (c > 255)
c = 255;
return c;
}
int setPatternIndex(String args)
{
patternIndex = args.toInt();
if(patternIndex < 0)
patternIndex = 0;
else if (patternIndex >= patternCount)
patternIndex = patternCount - 1;
EEPROM.write(1, patternIndex);
return patternIndex;
}
// Patterns from FastLED example DemoReel100: https://github.com/FastLED/FastLED/blob/master/examples/DemoReel100/DemoReel100.ino
uint8_t rainbow()
{
// FastLED's built-in rainbow generator
fill_rainbow( leds, NUM_LEDS, gHue, 255 / NUM_LEDS);
return 8;
}
uint8_t rainbowWithGlitter()
{
// built-in FastLED rainbow, plus some random sparkly glitter
rainbow();
addGlitter(80);
return 8;
}
uint8_t rainbowSolid()
{
fill_solid(leds, NUM_LEDS, CHSV(gHue, 255, 255));
return 8;
}
uint8_t confetti()
{
// random colored speckles that blink in and fade smoothly
fadeToBlackBy( leds, NUM_LEDS, 10);
int pos = random16(NUM_LEDS);
leds[pos] += CHSV( gHue + random8(64), 200, 255);
return 8;
}
uint8_t sinelon()
{
// a colored dot sweeping back and forth, with fading trails
fadeToBlackBy( leds, NUM_LEDS, 20);
int pos = beatsin16(13,0,NUM_LEDS);
leds[pos] += CHSV( gHue, 255, 192);
return 8;
}
uint8_t bpm()
{
// colored stripes pulsing at a defined Beats-Per-Minute (BPM)
uint8_t BeatsPerMinute = 62;
uint8_t beat = beatsin8( BeatsPerMinute, 64, 255);
for( int i = 0; i < NUM_LEDS; i++) { //9948
leds[i] = ColorFromPalette(currentPalette, gHue+(i*2), beat-gHue+(i*10));
}
return 8;
}
uint8_t juggle()
{
static uint8_t numdots = 4; // Number of dots in use.
static uint8_t faderate = 2; // How long should the trails be. Very low value = longer trails.
static uint8_t hueinc = 255 / numdots - 1; // Incremental change in hue between each dot.
static uint8_t thishue = 0; // Starting hue.
static uint8_t curhue = 0; // The current hue
static uint8_t thissat = 255; // Saturation of the colour.
static uint8_t thisbright = 255; // How bright should the LED/display be.
static uint8_t basebeat = 5; // Higher = faster movement.
static uint8_t lastSecond = 99; // Static variable, means it's only defined once. This is our 'debounce' variable.
uint8_t secondHand = (millis() / 1000) % 30; // IMPORTANT!!! Change '30' to a different value to change duration of the loop.
if (lastSecond != secondHand) { // Debounce to make sure we're not repeating an assignment.
lastSecond = secondHand;
switch(secondHand) {
case 0: numdots = 1; basebeat = 20; hueinc = 16; faderate = 2; thishue = 0; break; // You can change values here, one at a time , or altogether.
case 10: numdots = 4; basebeat = 10; hueinc = 16; faderate = 8; thishue = 128; break;
case 20: numdots = 8; basebeat = 3; hueinc = 0; faderate = 8; thishue=random8(); break; // Only gets called once, and not continuously for the next several seconds. Therefore, no rainbows.
case 30: break;
}
}
// Several colored dots, weaving in and out of sync with each other
curhue = thishue; // Reset the hue values.
fadeToBlackBy(leds, NUM_LEDS, faderate);
for( int i = 0; i < numdots; i++) {
//beat16 is a FastLED 3.1 function
leds[beatsin16(basebeat+i+numdots,0,NUM_LEDS)] += CHSV(gHue + curhue, thissat, thisbright);
curhue += hueinc;
}
return 0;
}
uint8_t fire()
{
heatMap(HeatColors_p, true);
return 30;
}
uint8_t water()
{
heatMap(IceColors_p, false);
return 30;
}
uint8_t draw()
{
return 30;
}
uint8_t showSolidColor()
{
fill_solid(leds, NUM_LEDS, solidColor);
return 30;
}
// Pride2015 by Mark Kriegsman: https://gist.github.com/kriegsman/964de772d64c502760e5
// This function draws rainbows with an ever-changing,
// widely-varying set of parameters.
uint8_t pride()
{
static uint16_t sPseudotime = 0;
static uint16_t sLastMillis = 0;
static uint16_t sHue16 = 0;
uint8_t sat8 = beatsin88( 87, 220, 250);
uint8_t brightdepth = beatsin88( 341, 96, 224);
uint16_t brightnessthetainc16 = beatsin88( 203, (25 * 256), (40 * 256));
uint8_t msmultiplier = beatsin88(147, 23, 60);
uint16_t hue16 = sHue16;//gHue * 256;
uint16_t hueinc16 = beatsin88(113, 1, 3000);
uint16_t ms = millis();
uint16_t deltams = ms - sLastMillis ;
sLastMillis = ms;
sPseudotime += deltams * msmultiplier;
sHue16 += deltams * beatsin88( 400, 5,9);
uint16_t brightnesstheta16 = sPseudotime;
for( uint16_t i = 0 ; i < NUM_LEDS; i++) {
hue16 += hueinc16;
uint8_t hue8 = hue16 / 256;
brightnesstheta16 += brightnessthetainc16;
uint16_t b16 = sin16( brightnesstheta16 ) + 32768;
uint16_t bri16 = (uint32_t)((uint32_t)b16 * (uint32_t)b16) / 65536;
uint8_t bri8 = (uint32_t)(((uint32_t)bri16) * brightdepth) / 65536;
bri8 += (255 - brightdepth);
CRGB newcolor = CHSV( hue8, sat8, bri8);
uint16_t pixelnumber = i;
pixelnumber = (NUM_LEDS-1) - pixelnumber;
nblend( leds[pixelnumber], newcolor, 64);
}
return 15;
}
uint8_t radialPaletteShift()
{
for (uint8_t i = 0; i < NUM_LEDS; i++) {
// leds[i] = ColorFromPalette( currentPalette, gHue + sin8(i*16), brightness);
leds[i] = ColorFromPalette(currentPalette, i + gHue, 255, LINEARBLEND);
}
return 8;
}
// based on FastLED example Fire2012WithPalette: https://github.com/FastLED/FastLED/blob/master/examples/Fire2012WithPalette/Fire2012WithPalette.ino
void heatMap(CRGBPalette16 palette, bool up)
{
fill_solid(leds, NUM_LEDS, CRGB::Black);
// Add entropy to random number generator; we use a lot of it.
random16_add_entropy(random(256));
uint8_t cooling = 55;
uint8_t sparking = 120;
// Array of temperature readings at each simulation cell
static const uint8_t halfLedCount = NUM_LEDS / 2;
static byte heat[2][halfLedCount];
byte colorindex;
for(uint8_t x = 0; x < 2; x++) {
// Step 1. Cool down every cell a little
for( int i = 0; i < halfLedCount; i++) {
heat[x][i] = qsub8( heat[x][i], random8(0, ((cooling * 10) / halfLedCount) + 2));
}
// Step 2. Heat from each cell drifts 'up' and diffuses a little
for( int k= halfLedCount - 1; k >= 2; k--) {
heat[x][k] = (heat[x][k - 1] + heat[x][k - 2] + heat[x][k - 2] ) / 3;
}
// Step 3. Randomly ignite new 'sparks' of heat near the bottom
if( random8() < sparking ) {
int y = random8(7);
heat[x][y] = qadd8( heat[x][y], random8(160,255) );
}
// Step 4. Map from heat cells to LED colors
for( int j = 0; j < halfLedCount; j++) {
// Scale the heat value from 0-255 down to 0-240
// for best results with color palettes.
colorindex = scale8(heat[x][j], 240);
CRGB color = ColorFromPalette(palette, colorindex);
if(up) {
if(x == 0) {
leds[(halfLedCount - 1) - j] = color;
}
else {
leds[halfLedCount + j] = color;
}
}
else {
if(x == 0) {
leds[j] = color;
}
else {
leds[(NUM_LEDS - 1) - j] = color;
}
}
}
}
}
// scale the brightness of all pixels down
void dimAll(byte value)
{
for (int i = 0; i < NUM_LEDS; i++){
leds[i].nscale8(value);
}
}
void addGlitter( uint8_t chanceOfGlitter)
{
if( random8() < chanceOfGlitter) {
leds[ random16(NUM_LEDS) ] += CRGB::White;
}
}
///////////////////////////////////////////////////////////////////////
// Forward declarations of an array of cpt-city gradient palettes, and
// a count of how many there are. The actual color palette definitions
// are at the bottom of this file.
extern const TProgmemRGBGradientPalettePtr gGradientPalettes[];
extern const uint8_t gGradientPaletteCount;
// Current palette number from the 'playlist' of color palettes
uint8_t gCurrentPaletteNumber = 0;
CRGBPalette16 gCurrentPalette( CRGB::Black);
CRGBPalette16 gTargetPalette( gGradientPalettes[0] );
uint8_t beatsaw8( accum88 beats_per_minute, uint8_t lowest = 0, uint8_t highest = 255,
uint32_t timebase = 0, uint8_t phase_offset = 0)
{
uint8_t beat = beat8( beats_per_minute, timebase);
uint8_t beatsaw = beat + phase_offset;
uint8_t rangewidth = highest - lowest;
uint8_t scaledbeat = scale8( beatsaw, rangewidth);
uint8_t result = lowest + scaledbeat;
return result;
}
uint8_t colorWaves()
{
EVERY_N_SECONDS( SECONDS_PER_PALETTE ) {
gCurrentPaletteNumber = addmod8( gCurrentPaletteNumber, 1, gGradientPaletteCount);
gTargetPalette = gGradientPalettes[ gCurrentPaletteNumber ];
}
EVERY_N_MILLISECONDS(40) {
nblendPaletteTowardPalette( gCurrentPalette, gTargetPalette, 16);
}
colorwaves( leds, NUM_LEDS, gCurrentPalette);
return 20;
}
// ColorWavesWithPalettes by Mark Kriegsman: https://gist.github.com/kriegsman/8281905786e8b2632aeb
// This function draws color waves with an ever-changing,
// widely-varying set of parameters, using a color palette.
void colorwaves( CRGB* ledarray, uint16_t numleds, CRGBPalette16& palette)
{
static uint16_t sPseudotime = 0;
static uint16_t sLastMillis = 0;
static uint16_t sHue16 = 0;
// uint8_t sat8 = beatsin88( 87, 220, 250);
uint8_t brightdepth = beatsin88( 341, 96, 224);
uint16_t brightnessthetainc16 = beatsin88( 203, (25 * 256), (40 * 256));
uint8_t msmultiplier = beatsin88(147, 23, 60);
uint16_t hue16 = sHue16;//gHue * 256;
uint16_t hueinc16 = beatsin88(113, 300, 1500);
uint16_t ms = millis();
uint16_t deltams = ms - sLastMillis ;
sLastMillis = ms;
sPseudotime += deltams * msmultiplier;
sHue16 += deltams * beatsin88( 400, 5,9);
uint16_t brightnesstheta16 = sPseudotime;
for( uint16_t i = 0 ; i < numleds; i++) {
hue16 += hueinc16;
uint8_t hue8 = hue16 / 256;
uint16_t h16_128 = hue16 >> 7;
if( h16_128 & 0x100) {
hue8 = 255 - (h16_128 >> 1);
} else {
hue8 = h16_128 >> 1;
}
brightnesstheta16 += brightnessthetainc16;
uint16_t b16 = sin16( brightnesstheta16 ) + 32768;
uint16_t bri16 = (uint32_t)((uint32_t)b16 * (uint32_t)b16) / 65536;
uint8_t bri8 = (uint32_t)(((uint32_t)bri16) * brightdepth) / 65536;
bri8 += (255 - brightdepth);
uint8_t index = hue8;
//index = triwave8( index);
index = scale8( index, 240);
CRGB newcolor = ColorFromPalette( palette, index, bri8);
uint16_t pixelnumber = i;
pixelnumber = (numleds-1) - pixelnumber;
nblend( ledarray[pixelnumber], newcolor, 128);
}
}
// Alternate rendering function just scrolls the current palette
// across the defined LED strip.
void palettetest( CRGB* ledarray, uint16_t numleds, const CRGBPalette16& gCurrentPalette)
{
static uint8_t startindex = 0;
startindex--;
fill_palette( ledarray, numleds, startindex, (256 / NUM_LEDS) + 1, gCurrentPalette, 255, LINEARBLEND);
}
// based on ColorTwinkles by Mark Kriegsman: https://gist.github.com/kriegsman/5408ecd397744ba0393e
uint8_t cloudTwinkles()
{
gCurrentPalette = CloudColors_p; // Blues and whites!
colortwinkles();
return 20;
}
uint8_t rainbowTwinkles()
{
gCurrentPalette = RainbowColors_p;
colortwinkles();
return 20;
}
uint8_t snowTwinkles()
{
CRGB w(85,85,85), W(CRGB::White);
gCurrentPalette = CRGBPalette16( W,W,W,W, w,w,w,w, w,w,w,w, w,w,w,w );
colortwinkles();
return 20;
}
uint8_t incandescentTwinkles()
{
CRGB l(0xE1A024);
gCurrentPalette = CRGBPalette16( l,l,l,l, l,l,l,l, l,l,l,l, l,l,l,l );
colortwinkles();
return 20;
}
#define STARTING_BRIGHTNESS 64
#define FADE_IN_SPEED 32
#define FADE_OUT_SPEED 20
#define DENSITY 255
enum { GETTING_DARKER = 0, GETTING_BRIGHTER = 1 };
void colortwinkles()
{
// Make each pixel brighter or darker, depending on
// its 'direction' flag.
brightenOrDarkenEachPixel( FADE_IN_SPEED, FADE_OUT_SPEED);
// Now consider adding a new random twinkle
if( random8() < DENSITY ) {
int pos = random16(NUM_LEDS);
if( !leds[pos]) {
leds[pos] = ColorFromPalette( gCurrentPalette, random8(), STARTING_BRIGHTNESS, NOBLEND);
setPixelDirection(pos, GETTING_BRIGHTER);
}
}
}
void brightenOrDarkenEachPixel( fract8 fadeUpAmount, fract8 fadeDownAmount)
{
for( uint16_t i = 0; i < NUM_LEDS; i++) {
if( getPixelDirection(i) == GETTING_DARKER) {
// This pixel is getting darker
leds[i] = makeDarker( leds[i], fadeDownAmount);
} else {
// This pixel is getting brighter
leds[i] = makeBrighter( leds[i], fadeUpAmount);
// now check to see if we've maxxed out the brightness
if( leds[i].r == 255 || leds[i].g == 255 || leds[i].b == 255) {
// if so, turn around and start getting darker
setPixelDirection(i, GETTING_DARKER);
}
}
}
}
CRGB makeBrighter( const CRGB& color, fract8 howMuchBrighter)
{
CRGB incrementalColor = color;
incrementalColor.nscale8( howMuchBrighter);
return color + incrementalColor;
}
CRGB makeDarker( const CRGB& color, fract8 howMuchDarker)
{
CRGB newcolor = color;
newcolor.nscale8( 255 - howMuchDarker);
return newcolor;
}
// Compact implementation of
// the directionFlags array, using just one BIT of RAM
// per pixel. This requires a bunch of bit wrangling,
// but conserves precious RAM. The cost is a few
// cycles and about 100 bytes of flash program memory.
uint8_t directionFlags[ (NUM_LEDS+7) / 8];
bool getPixelDirection( uint16_t i)
{
uint16_t index = i / 8;
uint8_t bitNum = i & 0x07;
uint8_t andMask = 1 << bitNum;
return (directionFlags[index] & andMask) != 0;
}
void setPixelDirection( uint16_t i, bool dir)
{
uint16_t index = i / 8;
uint8_t bitNum = i & 0x07;
uint8_t orMask = 1 << bitNum;
uint8_t andMask = 255 - orMask;
uint8_t value = directionFlags[index] & andMask;
if( dir ) {
value += orMask;
}
directionFlags[index] = value;
}