-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcmdline.go
143 lines (133 loc) · 4.56 KB
/
cmdline.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
// +build !appengine
// NeuralGo command line interface. Supports network creation / loading,
// training, testing, and serialization. MNIST data is supported as a motivating
// example.
//
// Sample usage:
// go run cmdline.go -serialized_network_file network.txt -training_file training.txt -testing_file testing.txt
package main
import (
"encoding/json";
"flag";
"fmt";
"github.com/golang/protobuf/proto";
"github.com/petar/GoMNIST";
"io/ioutil";
"log";
"math/rand";
"os";
"runtime/pprof";
"time";
"./neural"
)
var serializedNetworkFlag = flag.String(
"serialized_network", "", "File with JSON-formatted NetworkConfiguration.")
var mnistFlag = flag.String(
"mnist", "",
"Location of MNIST training / testing data. If non-empty, overrides " +
"-training_file and -testing_file.")
var trainingExamplesFlag = flag.String(
"training_file", "",
"File with JSON-formatted array of training examples with values.")
var testingExamplesFlag = flag.String(
"testing_file", "",
"File with JSON-formatted array of testing examples with values.")
var trainingIterationsFlag = flag.Int(
"training_iterations", 1000, "Number of training iterations.")
var learningRateFlag = flag.Float64(
"learning_rate", 0.001, "Speed of training.")
var weightDecayFlag = flag.Float64(
"weight_decay", 0, "Weight decay rate.")
var batchSizeFlag = flag.Int(
"batch_size", 1, "Size of batches used for training.")
var errorNameFlag = flag.String(
"error_name", "QUADRATIC_COST", "Which error function to use for training.")
var serializedNetworkOutFlag = flag.String(
"serialized_network_out", "",
"File to write JSON-formatted NetworkConfiguration.")
var cpuProfileFlag = flag.String(
"cpu_profile", "", "Write CPU profile to file.")
func ReadDatapointsOrDie(filename string) []neural.Datapoint {
bytes, err := ioutil.ReadFile(filename)
if err != nil {
log.Fatal(err)
}
datapoints := make([]neural.Datapoint, 0)
err = json.Unmarshal(bytes, &datapoints)
if err != nil {
log.Fatal(err)
}
return datapoints
}
func main() {
flag.Parse()
if *cpuProfileFlag != "" {
f, err := os.Create(*cpuProfileFlag)
if err != nil {
log.Fatal(err)
}
pprof.StartCPUProfile(f)
defer pprof.StopCPUProfile()
}
rand.Seed(time.Now().UTC().UnixNano())
// Set up neural network.
var neuralNetwork *neural.Network
var trainingExamples []neural.Datapoint
var testingExamples []neural.Datapoint
if len(*mnistFlag) > 0 {
train, test, err := GoMNIST.Load(*mnistFlag)
if err != nil {
log.Fatal(err)
}
for i := 0; i < train.Count(); i++ {
var datapoint neural.Datapoint
image, label := train.Get(i)
datapoint.Values = append(datapoint.Values, float64(label))
for _, pixel := range(image) {
datapoint.Features = append(datapoint.Features, float64(pixel))
}
trainingExamples = append(trainingExamples, datapoint)
}
for i := 0; i < test.Count(); i++ {
var datapoint neural.Datapoint
image, label := test.Get(i)
datapoint.Values = append(datapoint.Values, float64(label))
for _, pixel := range(image) {
datapoint.Features = append(datapoint.Features, float64(pixel))
}
testingExamples = append(testingExamples, datapoint)
}
} else {
trainingExamples = ReadDatapointsOrDie(*trainingExamplesFlag)
testingExamples = ReadDatapointsOrDie(*testingExamplesFlag)
}
fmt.Printf("Finished loading data!\n")
byteNetwork, err := ioutil.ReadFile(*serializedNetworkFlag)
if err != nil {
log.Fatal(err)
}
neuralNetwork = new(neural.Network)
neuralNetwork.Deserialize(byteNetwork)
// If synapse weights aren't specified, randomize them.
if neuralNetwork.Layers[0].Weight.At(0, 0) == 0 {
neuralNetwork.RandomizeSynapses()
}
fmt.Printf("Finished creating the network!\n")
// Train the model.
learningConfiguration := neural.LearningConfiguration{
Epochs: proto.Int32(int32(*trainingIterationsFlag)),
Rate: proto.Float64(*learningRateFlag),
Decay: proto.Float64(*weightDecayFlag),
BatchSize: proto.Int32(int32(*batchSizeFlag)),
ErrorName:
neural.ErrorName(neural.ErrorName_value[*errorNameFlag]).Enum(),
}
neural.Train(neuralNetwork, trainingExamples, learningConfiguration)
// Test & output model:
fmt.Printf("Training error: %v\nTesting error: %v\n",
neural.Evaluate(*neuralNetwork, trainingExamples),
neural.Evaluate(*neuralNetwork, testingExamples))
if len(*serializedNetworkOutFlag) > 0 {
ioutil.WriteFile(*serializedNetworkOutFlag, neuralNetwork.Serialize(), 0777)
}
}