-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathinfer.py
87 lines (70 loc) · 2.42 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import argparse
import cv2
import numpy as np
import onnxruntime as ort
from depth_anything.util.transform import load_image
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument(
"--img",
type=str,
required=True,
help="Path to input image.",
)
parser.add_argument(
"--model",
type=str,
required=True,
help="Path to ONNX model.",
)
parser.add_argument(
"--viz", action="store_true", help="Whether to visualize the results."
)
return parser.parse_args()
def infer(img: str, model: str, viz: bool = False):
image, (orig_h, orig_w) = load_image(img)
session = ort.InferenceSession(
model, providers=["CUDAExecutionProvider", "CPUExecutionProvider"]
)
depth = session.run(None, {"image": image})[0]
depth = cv2.resize(depth[0, 0], (orig_w, orig_h))
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.astype(np.uint8)
depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)
# Visualization
if viz:
margin_width = 50
caption_height = 60
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 1
font_thickness = 2
split_region = np.ones((orig_h, margin_width, 3), dtype=np.uint8) * 255
combined_results = cv2.hconcat([cv2.imread(img), split_region, depth_color])
caption_space = (
np.ones((caption_height, combined_results.shape[1], 3), dtype=np.uint8)
* 255
)
captions = ["Raw image", "Depth Anything"]
segment_width = orig_w + margin_width
for i, caption in enumerate(captions):
# Calculate text size
text_size = cv2.getTextSize(caption, font, font_scale, font_thickness)[0]
# Calculate x-coordinate to center the text
text_x = int((segment_width * i) + (orig_w - text_size[0]) / 2)
# Add text caption
cv2.putText(
caption_space,
caption,
(text_x, 40),
font,
font_scale,
(0, 0, 0),
font_thickness,
)
final_result = cv2.vconcat([caption_space, combined_results])
cv2.imshow("depth", final_result)
cv2.waitKey(0)
return depth
if __name__ == "__main__":
args = parse_args()
infer(**vars(args))