This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathvisualize.py
245 lines (193 loc) · 7.17 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import matplotlib.pyplot as plt
from matplotlib import cm
import seaborn as sns
import pandas as pd
import numpy as np
import warnings
import random
warnings.filterwarnings("ignore")
plt.switch_backend('agg')
sns.set()
colors_palette = ['#1F77B4', '#FF7F0E', '#2CA02C', '#D62728', '#9467BD',
'#8C564B', '#E377C2', '#BCBD22', '#17BECF', '#40004B',
'#762A83', '#9970AB', '#C2A5CF', '#E7D4E8', '#F7F7F7',
'#D9F0D3', '#A6DBA0', '#5AAE61', '#1B7837', '#00441B',
'#8DD3C7', '#FFFFB3', '#BEBADA', '#FB8072', '#80B1D3',
'#FDB462', '#B3DE69', '#FCCDE5', '#D9D9D9', '#BC80BD',
'#CCEBC5', '#FFED6F', '#edf8b1', '#c7e9b4', '#7fcdbb',
'#41b6c4', '#1d91c0', '#225ea8', '#253494', '#081d58']
def linear_scale(embeddings):
embeddings = np.transpose(embeddings)
sqnorm = np.sum(embeddings ** 2, axis=1, keepdims=True)
dist = np.arccosh(1 + 2 * sqnorm / (1 - sqnorm))
dist = np.sqrt(dist)
dist /= dist.max()
sqnorm[sqnorm == 0] = 1
embeddings = dist * embeddings / np.sqrt(sqnorm)
return np.transpose(embeddings)
def plot_training(loss_func, title_name=None, file_name=None, d1=4, d2=4, fs=11):
fig = plt.figure(figsize=(d1, d2))
plt.plot(loss_func, c='#f03b20')
if title_name:
plt.title(title_name, fontsize=fs)
plt.show()
if file_name:
plt.savefig(file_name + '.png', format='png')
plt.close(fig)
def plot_poincare_disc(x, labels=None, labels_name='labels', labels_order=None,
file_name=None, coldict=None,
d1=19, d2=18.0, fs=11, ms=20, col_palette=plt.get_cmap("tab10"), bbox=(1.3, 0.7)):
idx = np.random.permutation(len(x))
df = pd.DataFrame(x[idx, :], columns=['pm1', 'pm2'])
fig = plt.figure(figsize=(d1, d2))
ax = plt.gca()
circle = plt.Circle((0, 0), radius=1, fc='none', color='black')
ax.add_patch(circle)
ax.plot(0, 0, '.', c=(0, 0, 0), ms=4)
if not (labels is None):
df[labels_name] = labels[idx]
if labels_order is None:
labels_order = np.unique(labels)
if coldict is None:
coldict = dict(zip(labels_order, col_palette[:len(labels)]))
sns.scatterplot(x="pm1", y="pm2", hue=labels_name,
hue_order=labels_order,
palette=coldict,
alpha=1.0, edgecolor="none",
data=df, ax=ax, s=ms)
ax.legend(fontsize=fs, loc='best', bbox_to_anchor=bbox)
else:
sns.scatterplot(x="pm1", y="pm2",
data=df, ax=ax2, s=ms)
fig.tight_layout()
ax.axis('off')
ax.axis('equal')
labels_list = np.unique(labels)
for l in labels_list:
# i = np.random.choice(np.where(labels == l)[0])
ix_l = np.where(labels == l)[0]
c1 = np.median(x[ix_l, 0])
c2 = np.median(x[ix_l, 1])
ax.text(c1, c2, l, fontsize=fs)
if file_name:
plt.savefig(file_name + '.png', format='png')
plt.close(fig)
def plotPoincareDisc(x,
label_names=None,
file_name=None,
title_name=None,
idx_zoom=None,
show=False,
d1=12,
d2=6,
fs=11,
ms=4,
col_palette=None,
color_dict=None):
if col_palette is None:
col_palette = colors_palette
# col_palette = plt.get_cmap("tab10")
df = pd.DataFrame(dict(x=x[0], y=x[1], label=label_names))
groups = df.groupby('label')
fig = plt.figure(figsize=(d1, d2), dpi=300)
circle = plt.Circle((0, 0), radius=1, fc='none', color='black')
plt.subplot(1, 2, 1)
plt.gca().add_patch(circle)
plt.plot(0, 0, 'x', c=(0, 0, 0), ms=ms)
plt.title(title_name, fontsize=fs)
if color_dict is None:
j = 0
color_dict = {}
for name, group in groups:
color_dict[name] = col_palette[j]
j += 1
marker = 'o'
for name, group in groups:
plt.plot(group.x, group.y, marker=marker, markerfacecolor='none',
c=color_dict[name], linestyle='', ms=ms, label=name)
plt.plot(0, 0, 'x', c=(1, 1, 1), ms=ms)
plt.axis('off')
plt.axis('equal')
# plt.legend(numpoints=1, loc='center left',
# bbox_to_anchor=(1, 0.5), fontsize=fs)
labels_list = np.unique(label_names)
for l in labels_list:
# i = np.random.choice(np.where(labels == l)[0])
ix_l = np.where(label_names == l)[0]
c1 = np.median(x[0, ix_l])
c2 = np.median(x[1, ix_l])
plt.text(c1, c2, l, fontsize=fs)
#
if idx_zoom is None:
xl = np.array(linear_scale(x))
xl[np.isnan(xl)] = 0
df = pd.DataFrame(dict(x=xl[0], y=xl[1], label=label_names))
groups = df.groupby('label')
else:
xl = np.array(linear_scale(x[:, idx_zoom]))
xl[np.isnan(xl)] = 0
df = pd.DataFrame(dict(x=xl[0], y=xl[1], label=label_names[idx_zoom]))
groups = df.groupby('label')
circle = plt.Circle((0, 0), radius=1, fc='none',
color='black', linestyle=':')
plt.subplot(1, 2, 2)
plt.gca().add_patch(circle)
plt.plot(0, 0, 'x', c=(0, 0, 0), ms=ms)
plt.title('zoom in', fontsize=fs)
for name, group in groups:
plt.plot(group.x, group.y, marker=marker, markerfacecolor='none',
c=color_dict[name], linestyle='', ms=ms, label=name)
plt.plot(0, 0, 'x', c=(1, 1, 1), ms=6)
plt.axis('off')
plt.axis('equal')
plt.legend(numpoints=1, loc='center left',
bbox_to_anchor=(1, 0.5), fontsize=fs)
plt.tight_layout()
if file_name:
plt.savefig(file_name + '.png', format='png')
if show:
plt.show()
plt.close(fig)
return color_dict
def plot2D(x,
label_names=None,
file_name=None,
title_name=None,
idx_zoom=None,
show=False,
d1=7,
d2=7,
fs=8,
ms=4,
col_palette=None):
if col_palette is None:
col_palette = colors_palette
df = pd.DataFrame(dict(x=x[0], y=x[1], label=label_names))
groups = df.groupby('label')
fig = plt.figure(figsize=(d1, d2), dpi=300)
plt.title(title_name, fontsize=fs)
j = 0
color_dict = {}
for name, group in groups:
marker = 'o'
if name in set(['Ery', 'Mk', 'MEP']):
marker = 'v'
elif name == 'Lymph':
marker = 's'
plt.plot(group.x, group.y, marker=marker, markerfacecolor='none',
c=col_palette[j], linestyle='', ms=ms, label=name)
color_dict[name] = col_palette[j]
j += 1
plt.legend(numpoints=1, loc='center left',
bbox_to_anchor=(1, 0.5), fontsize=fs)
if file_name:
plt.savefig(file_name + '.png', format='png')
if show:
plt.show()
plt.close(fig)