This repository has been archived by the owner on Mar 15, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 92
/
Copy pathgenerate.py
executable file
·202 lines (170 loc) · 8.45 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Generate images using pretrained network pickle."""
import os
import re
import time
import glob
from typing import List, Optional
import click
import dnnlib
import numpy as np
import PIL.Image
import torch
import imageio
import legacy
from renderer import Renderer
#----------------------------------------------------------------------------
def num_range(s: str) -> List[int]:
'''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.'''
range_re = re.compile(r'^(\d+)-(\d+)$')
m = range_re.match(s)
if m:
return list(range(int(m.group(1)), int(m.group(2))+1))
vals = s.split(',')
return [int(x) for x in vals]
#----------------------------------------------------------------------------
os.environ['PYOPENGL_PLATFORM'] = 'egl'
@click.command()
@click.pass_context
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
@click.option('--seeds', type=num_range, help='List of random seeds')
@click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True)
@click.option('--class', 'class_idx', type=int, help='Class label (unconditional if not specified)')
@click.option('--noise-mode', help='Noise mode', type=click.Choice(['const', 'random', 'none']), default='const', show_default=True)
@click.option('--projected-w', help='Projection result file', type=str, metavar='FILE')
@click.option('--outdir', help='Where to save the output images', type=str, required=True, metavar='DIR')
@click.option('--render-program', default=None, show_default=True)
@click.option('--render-option', default=None, type=str, help="e.g. up_256, camera, depth")
@click.option('--n_steps', default=8, type=int, help="number of steps for each seed")
@click.option('--no-video', default=False)
@click.option('--relative_range_u_scale', default=1.0, type=float, help="relative scale on top of the original range u")
def generate_images(
ctx: click.Context,
network_pkl: str,
seeds: Optional[List[int]],
truncation_psi: float,
noise_mode: str,
outdir: str,
class_idx: Optional[int],
projected_w: Optional[str],
render_program=None,
render_option=None,
n_steps=8,
no_video=False,
relative_range_u_scale=1.0
):
device = torch.device('cuda')
if os.path.isdir(network_pkl):
network_pkl = sorted(glob.glob(network_pkl + '/*.pkl'))[-1]
print('Loading networks from "%s"...' % network_pkl)
with dnnlib.util.open_url(network_pkl) as f:
network = legacy.load_network_pkl(f)
G = network['G_ema'].to(device) # type: ignore
D = network['D'].to(device)
# from fairseq import pdb;pdb.set_trace()
os.makedirs(outdir, exist_ok=True)
# Labels.
label = torch.zeros([1, G.c_dim], device=device)
if G.c_dim != 0:
if class_idx is None:
ctx.fail('Must specify class label with --class when using a conditional network')
label[:, class_idx] = 1
else:
if class_idx is not None:
print ('warn: --class=lbl ignored when running on an unconditional network')
# avoid persistent classes...
from training.networks import Generator
# from training.stylenerf import Discriminator
from torch_utils import misc
with torch.no_grad():
G2 = Generator(*G.init_args, **G.init_kwargs).to(device)
misc.copy_params_and_buffers(G, G2, require_all=False)
# D2 = Discriminator(*D.init_args, **D.init_kwargs).to(device)
# misc.copy_params_and_buffers(D, D2, require_all=False)
G2 = Renderer(G2, D, program=render_program)
# Generate images.
all_imgs = []
def stack_imgs(imgs):
img = torch.stack(imgs, dim=2)
return img.reshape(img.size(0) * img.size(1), img.size(2) * img.size(3), 3)
def proc_img(img):
return (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8).cpu()
if projected_w is not None:
ws = np.load(projected_w)
ws = torch.tensor(ws, device=device) # pylint: disable=not-callable
img = G2(styles=ws, truncation_psi=truncation_psi, noise_mode=noise_mode, render_option=render_option)
assert isinstance(img, List)
imgs = [proc_img(i) for i in img]
all_imgs += [imgs]
else:
for seed_idx, seed in enumerate(seeds):
print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds)))
G2.set_random_seed(seed)
z = torch.from_numpy(np.random.RandomState(seed).randn(2, G.z_dim)).to(device)
relative_range_u = [0.5 - 0.5 * relative_range_u_scale, 0.5 + 0.5 * relative_range_u_scale]
outputs = G2(
z=z,
c=label,
truncation_psi=truncation_psi,
noise_mode=noise_mode,
render_option=render_option,
n_steps=n_steps,
relative_range_u=relative_range_u,
return_cameras=True)
if isinstance(outputs, tuple):
img, cameras = outputs
else:
img = outputs
if isinstance(img, List):
imgs = [proc_img(i) for i in img]
if not no_video:
all_imgs += [imgs]
curr_out_dir = os.path.join(outdir, 'seed_{:0>6d}'.format(seed))
os.makedirs(curr_out_dir, exist_ok=True)
if (render_option is not None) and ("gen_ibrnet_metadata" in render_option):
intrinsics = []
poses = []
_, H, W, _ = imgs[0].shape
for i, camera in enumerate(cameras):
intri, pose, _, _ = camera
focal = (H - 1) * 0.5 / intri[0, 0, 0].item()
intri = np.diag([focal, focal, 1.0, 1.0]).astype(np.float32)
intri[0, 2], intri[1, 2] = (W - 1) * 0.5, (H - 1) * 0.5
pose = pose.squeeze().detach().cpu().numpy() @ np.diag([1, -1, -1, 1]).astype(np.float32)
intrinsics.append(intri)
poses.append(pose)
intrinsics = np.stack(intrinsics, axis=0)
poses = np.stack(poses, axis=0)
np.savez(os.path.join(curr_out_dir, 'cameras.npz'), intrinsics=intrinsics, poses=poses)
with open(os.path.join(curr_out_dir, 'meta.conf'), 'w') as f:
f.write('depth_range = {}\ntest_hold_out = {}\nheight = {}\nwidth = {}'.
format(G2.generator.synthesis.depth_range, 2, H, W))
img_dir = os.path.join(curr_out_dir, 'images_raw')
os.makedirs(img_dir, exist_ok=True)
for step, img in enumerate(imgs):
PIL.Image.fromarray(img[0].detach().cpu().numpy(), 'RGB').save(f'{img_dir}/{step:03d}.png')
else:
img = proc_img(img)[0]
PIL.Image.fromarray(img.numpy(), 'RGB').save(f'{outdir}/seed_{seed:0>6d}.png')
if len(all_imgs) > 0 and (not no_video):
# write to video
timestamp = time.strftime('%Y%m%d.%H%M%S',time.localtime(time.time()))
seeds = ','.join([str(s) for s in seeds]) if seeds is not None else 'projected'
network_pkl = network_pkl.split('/')[-1].split('.')[0]
all_imgs = [stack_imgs([a[k] for a in all_imgs]).numpy() for k in range(len(all_imgs[0]))]
imageio.mimwrite(f'{outdir}/{network_pkl}_{timestamp}_{seeds}.mp4', all_imgs, fps=30, quality=8)
outdir = f'{outdir}/{network_pkl}_{timestamp}_{seeds}'
os.makedirs(outdir, exist_ok=True)
for step, img in enumerate(all_imgs):
PIL.Image.fromarray(img, 'RGB').save(f'{outdir}/{step:04d}.png')
#----------------------------------------------------------------------------
if __name__ == "__main__":
generate_images() # pylint: disable=no-value-for-parameter
#----------------------------------------------------------------------------