-
Notifications
You must be signed in to change notification settings - Fork 3.7k
/
Copy pathbench_all_ivf.py
567 lines (463 loc) · 19.4 KB
/
bench_all_ivf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import os
import sys
import time
import json
import faiss
import numpy as np
try:
import datasets_fb as datasets
except ModuleNotFoundError:
import datasets_oss as datasets
sanitize = datasets.sanitize
def unwind_index_ivf(index):
if isinstance(index, faiss.IndexPreTransform):
assert index.chain.size() == 1
vt = index.chain.at(0)
index_ivf, vt2 = unwind_index_ivf(faiss.downcast_index(index.index))
assert vt2 is None
if vt is None:
vt = lambda x: x
else:
vt = faiss.downcast_VectorTransform(vt)
return index_ivf, vt
if hasattr(faiss, "IndexRefine") and isinstance(index, faiss.IndexRefine):
return unwind_index_ivf(faiss.downcast_index(index.base_index))
if isinstance(index, faiss.IndexIVF):
return index, None
else:
return None, None
def apply_AQ_options(index, args):
# if not(
# isinstance(index, faiss.IndexAdditiveQuantize) or
# isinstance(index, faiss.IndexIVFAdditiveQuantizer)):
# return
if args.RQ_train_default:
print("set default training for RQ")
index.rq.train_type
index.rq.train_type = faiss.ResidualQuantizer.Train_default
if args.RQ_beam_size != -1:
print("set RQ beam size to", args.RQ_beam_size)
index.rq.max_beam_size
index.rq.max_beam_size = args.RQ_beam_size
if args.LSQ_encode_ils_iters != -1:
print("set LSQ ils iterations to", args.LSQ_encode_ils_iters)
index.lsq.encode_ils_iters
index.lsq.encode_ils_iters = args.LSQ_encode_ils_iters
if args.RQ_use_beam_LUT != -1:
print("set RQ beam LUT to", args.RQ_use_beam_LUT)
index.rq.use_beam_LUT
index.rq.use_beam_LUT = args.RQ_use_beam_LUT
def eval_setting(index, xq, gt, k, inter, min_time):
""" evaluate searching in terms of precision vs. speed """
nq = xq.shape[0]
ivf_stats = faiss.cvar.indexIVF_stats
ivf_stats.reset()
nrun = 0
t0 = time.time()
while True:
D, I = index.search(xq, k)
nrun += 1
t1 = time.time()
if t1 - t0 > min_time:
break
ms_per_query = ((t1 - t0) * 1000.0 / nq / nrun)
res = {
"ms_per_query": ms_per_query,
"nrun": nrun
}
res["n"] = ms_per_query
if inter:
rank = k
inter_measure = faiss.eval_intersection(gt[:, :rank], I[:, :rank]) / (nq * rank)
print("%.4f" % inter_measure, end=' ')
res["inter_measure"] = inter_measure
else:
res["recalls"] = {}
for rank in 1, 10, 100:
recall = (I[:, :rank] == gt[:, :1]).sum() / float(nq)
print("%.4f" % recall, end=' ')
res["recalls"][rank] = recall
print(" %9.5f " % ms_per_query, end=' ')
print("%12d " % (ivf_stats.ndis / nrun), end=' ')
print(nrun)
res["ndis"] = ivf_stats.ndis / nrun
return res
######################################################
# Training
######################################################
def run_train(args, ds, res):
nq, d = ds.nq, ds.d
nb, d = ds.nq, ds.d
print("build index, key=", args.indexkey)
index = faiss.index_factory(
d, args.indexkey, faiss.METRIC_L2 if ds.metric == "L2" else
faiss.METRIC_INNER_PRODUCT
)
index_ivf, vec_transform = unwind_index_ivf(index)
if args.by_residual != -1:
by_residual = args.by_residual == 1
print("setting by_residual = ", by_residual)
index_ivf.by_residual # check if field exists
index_ivf.by_residual = by_residual
if index_ivf:
print("Update add-time parameters")
# adjust default parameters used at add time for quantizers
# because otherwise the assignment is inaccurate
quantizer = faiss.downcast_index(index_ivf.quantizer)
if isinstance(quantizer, faiss.IndexRefine):
print(" update quantizer k_factor=", quantizer.k_factor, end=" -> ")
quantizer.k_factor = 32 if index_ivf.nlist < 1e6 else 64
print(quantizer.k_factor)
base_index = faiss.downcast_index(quantizer.base_index)
if isinstance(base_index, faiss.IndexIVF):
print(" update quantizer nprobe=", base_index.nprobe, end=" -> ")
base_index.nprobe = (
16 if base_index.nlist < 1e5 else
32 if base_index.nlist < 4e6 else
64)
print(base_index.nprobe)
elif isinstance(quantizer, faiss.IndexHNSW):
hnsw = quantizer.hnsw
print(
f" update HNSW quantizer options, before: "
f"{hnsw.efSearch=:} {hnsw.efConstruction=:}"
)
hnsw.efSearch = 40 if index_ivf.nlist < 4e6 else 64
hnsw.efConstruction = 200
print(f" after: {hnsw.efSearch=:} {hnsw.efConstruction=:}")
apply_AQ_options(index_ivf or index, args)
if index_ivf:
index_ivf.verbose = True
index_ivf.quantizer.verbose = True
index_ivf.cp.verbose = True
else:
index.verbose = True
maxtrain = args.maxtrain
if maxtrain == 0:
if 'IMI' in args.indexkey:
maxtrain = int(256 * 2 ** (np.log2(index_ivf.nlist) / 2))
elif index_ivf:
maxtrain = 50 * index_ivf.nlist
else:
# just guess...
maxtrain = 256 * 100
maxtrain = max(maxtrain, 256 * 100)
print("setting maxtrain to %d" % maxtrain)
try:
xt2 = ds.get_train(maxtrain=maxtrain)
except NotImplementedError:
print("No training set: training on database")
xt2 = ds.get_database()[:maxtrain]
print("train, size", xt2.shape)
assert np.all(np.isfinite(xt2))
if (isinstance(vec_transform, faiss.OPQMatrix) and
isinstance(index_ivf, faiss.IndexIVFPQFastScan)):
print(" Forcing OPQ training PQ to PQ4")
ref_pq = index_ivf.pq
training_pq = faiss.ProductQuantizer(
ref_pq.d, ref_pq.M, ref_pq.nbits
)
vec_transform.pq
vec_transform.pq = training_pq
if args.get_centroids_from == '':
if args.clustering_niter >= 0:
print(("setting nb of clustering iterations to %d" %
args.clustering_niter))
index_ivf.cp.niter = args.clustering_niter
if args.train_on_gpu:
print("add a training index on GPU")
train_index = faiss.index_cpu_to_all_gpus(
faiss.IndexFlatL2(index_ivf.d))
index_ivf.clustering_index = train_index
else:
print("Getting centroids from", args.get_centroids_from)
src_index = faiss.read_index(args.get_centroids_from)
src_quant = faiss.downcast_index(src_index.quantizer)
centroids = src_quant.reconstruct_n()
print(" centroid table shape", centroids.shape)
if isinstance(vec_transform, faiss.VectorTransform):
print(" training vector transform")
vec_transform.train(xt2)
print(" transform centroids")
centroids = vec_transform.apply_py(centroids)
if not index_ivf.quantizer.is_trained:
print(" training quantizer")
index_ivf.quantizer.train(centroids)
print(" add centroids to quantizer")
index_ivf.quantizer.add(centroids)
del src_index
t0 = time.time()
index.train(xt2)
res.train_time = time.time() - t0
print(" train in %.3f s" % res.train_time)
return index
######################################################
# Populating index
######################################################
def run_add(args, ds, index, res):
print("adding")
t0 = time.time()
if args.add_bs == -1:
assert args.split == [1, 0], "split not supported with full batch add"
index.add(sanitize(ds.get_database()))
else:
totn = ds.nb // args.split[0] # approximate
i0 = 0
print(f"Adding in block sizes {args.add_bs} with split {args.split}")
for xblock in ds.database_iterator(bs=args.add_bs, split=args.split):
i1 = i0 + len(xblock)
print(" adding %d:%d / %d [%.3f s, RSS %d kiB] " % (
i0, i1, totn, time.time() - t0,
faiss.get_mem_usage_kb()))
index.add(xblock)
i0 = i1
res.t_add = time.time() - t0
print(f" add in {res.t_add:.3f} s index size {index.ntotal}")
######################################################
# Search
######################################################
def run_search(args, ds, index, res):
index_ivf, vec_transform = unwind_index_ivf(index)
if args.no_precomputed_tables:
if isinstance(index_ivf, faiss.IndexIVFPQ):
print("disabling precomputed table")
index_ivf.use_precomputed_table = -1
index_ivf.precomputed_table.clear()
if args.indexfile:
print("index size on disk: ", os.stat(args.indexfile).st_size)
if hasattr(index, "code_size"):
print("vector code_size", index.code_size)
if hasattr(index_ivf, "code_size"):
print("vector code_size (IVF)", index_ivf.code_size)
print("current RSS:", faiss.get_mem_usage_kb() * 1024)
precomputed_table_size = 0
if hasattr(index_ivf, 'precomputed_table'):
precomputed_table_size = index_ivf.precomputed_table.size() * 4
print("precomputed tables size:", precomputed_table_size)
# Index is ready
xq = sanitize(ds.get_queries())
nq, d = xq.shape
gt = ds.get_groundtruth(k=args.k)
if not args.accept_short_gt: # Deep1B has only a single NN per query
assert gt.shape[1] == args.k
if args.searchthreads != -1:
print("Setting nb of threads to", args.searchthreads)
faiss.omp_set_num_threads(args.searchthreads)
else:
print("nb search threads: ", faiss.omp_get_max_threads())
ps = faiss.ParameterSpace()
ps.initialize(index)
parametersets = args.searchparams
if args.inter:
header = (
'%-40s inter@%3d time(ms/q) nb distances #runs' %
("parameters", args.k)
)
else:
header = (
'%-40s R@1 R@10 R@100 time(ms/q) nb distances #runs' %
"parameters"
)
res.search_results = {}
if parametersets == ['autotune']:
ps.n_experiments = args.n_autotune
ps.min_test_duration = args.min_test_duration
for kv in args.autotune_max:
k, vmax = kv.split(':')
vmax = float(vmax)
print("limiting %s to %g" % (k, vmax))
pr = ps.add_range(k)
values = faiss.vector_to_array(pr.values)
values = np.array([v for v in values if v < vmax])
faiss.copy_array_to_vector(values, pr.values)
for kv in args.autotune_range:
k, vals = kv.split(':')
vals = np.fromstring(vals, sep=',')
print("setting %s to %s" % (k, vals))
pr = ps.add_range(k)
faiss.copy_array_to_vector(vals, pr.values)
# setup the Criterion object
if args.inter:
print("Optimize for intersection @ ", args.k)
crit = faiss.IntersectionCriterion(nq, args.k)
else:
print("Optimize for 1-recall @ 1")
crit = faiss.OneRecallAtRCriterion(nq, 1)
# by default, the criterion will request only 1 NN
crit.nnn = args.k
crit.set_groundtruth(None, gt.astype('int64'))
# then we let Faiss find the optimal parameters by itself
print("exploring operating points, %d threads" % faiss.omp_get_max_threads());
ps.display()
t0 = time.time()
op = ps.explore(index, xq, crit)
res.t_explore = time.time() - t0
print("Done in %.3f s, available OPs:" % res.t_explore)
op.display()
print("Re-running evaluation on selected OPs")
print(header)
opv = op.optimal_pts
maxw = max(max(len(opv.at(i).key) for i in range(opv.size())), 40)
for i in range(opv.size()):
opt = opv.at(i)
ps.set_index_parameters(index, opt.key)
print(opt.key.ljust(maxw), end=' ')
sys.stdout.flush()
res_i = eval_setting(index, xq, gt, args.k, args.inter, args.min_test_duration)
res.search_results[opt.key] = res_i
else:
print(header)
for param in parametersets:
print("%-40s " % param, end=' ')
sys.stdout.flush()
ps.set_index_parameters(index, param)
res_i = eval_setting(index, xq, gt, args.k, args.inter, args.min_test_duration)
res.search_results[param] = res_i
######################################################
# Driver function
######################################################
def main():
parser = argparse.ArgumentParser()
def aa(*args, **kwargs):
group.add_argument(*args, **kwargs)
group = parser.add_argument_group('general options')
aa('--nthreads', default=-1, type=int,
help='nb of threads to use at train and add time')
aa('--json', default=False, action="store_true",
help="output stats in JSON format at the end")
aa('--todo', default=["check_files"],
choices=["train", "add", "search", "check_files"],
nargs="+", help='what to do (check_files means decide depending on which index files exist)')
group = parser.add_argument_group('dataset options')
aa('--db', default='deep1M', help='dataset')
aa('--compute_gt', default=False, action='store_true',
help='compute and store the groundtruth')
aa('--force_IP', default=False, action="store_true",
help='force IP search instead of L2')
aa('--accept_short_gt', default=False, action='store_true',
help='work around a problem with Deep1B GT')
group = parser.add_argument_group('index construction')
aa('--indexkey', default='HNSW32', help='index_factory type')
aa('--trained_indexfile', default='',
help='file to read or write a trained index from')
aa('--maxtrain', default=256 * 256, type=int,
help='maximum number of training points (0 to set automatically)')
aa('--indexfile', default='', help='file to read or write index from')
aa('--split', default=[1, 0], type=int, nargs=2, help="database split")
aa('--add_bs', default=-1, type=int,
help='add elements index by batches of this size')
group = parser.add_argument_group('IVF options')
aa('--by_residual', default=-1, type=int,
help="set if index should use residuals (default=unchanged)")
aa('--no_precomputed_tables', action='store_true', default=False,
help='disable precomputed tables (uses less memory)')
aa('--get_centroids_from', default='',
help='get the centroids from this index (to speed up training)')
aa('--clustering_niter', default=-1, type=int,
help='number of clustering iterations (-1 = leave default)')
aa('--train_on_gpu', default=False, action='store_true',
help='do training on GPU')
group = parser.add_argument_group('index-specific options')
aa('--M0', default=-1, type=int, help='size of base level for HNSW')
aa('--RQ_train_default', default=False, action="store_true",
help='disable progressive dim training for RQ')
aa('--RQ_beam_size', default=-1, type=int,
help='set beam size at add time')
aa('--LSQ_encode_ils_iters', default=-1, type=int,
help='ILS iterations for LSQ')
aa('--RQ_use_beam_LUT', default=-1, type=int,
help='use beam LUT at add time')
group = parser.add_argument_group('searching')
aa('--k', default=100, type=int, help='nb of nearest neighbors')
aa('--inter', default=False, action='store_true',
help='use intersection measure instead of 1-recall as metric')
aa('--searchthreads', default=-1, type=int,
help='nb of threads to use at search time')
aa('--searchparams', nargs='+', default=['autotune'],
help="search parameters to use (can be autotune or a list of params)")
aa('--n_autotune', default=500, type=int,
help="max nb of autotune experiments")
aa('--autotune_max', default=[], nargs='*',
help='set max value for autotune variables format "var:val" (exclusive)')
aa('--autotune_range', default=[], nargs='*',
help='set complete autotune range, format "var:val1,val2,..."')
aa('--min_test_duration', default=3.0, type=float,
help='run test at least for so long to avoid jitter')
aa('--indexes_to_merge', default=[], nargs="*",
help="load these indexes to search and merge them before searching")
args = parser.parse_args()
if args.todo == ["check_files"]:
if os.path.exists(args.indexfile):
args.todo = ["search"]
elif os.path.exists(args.trained_indexfile):
args.todo = ["add", "search"]
else:
args.todo = ["train", "add", "search"]
print("setting todo to", args.todo)
print("args:", args)
os.system('echo -n "nb processors "; '
'cat /proc/cpuinfo | grep ^processor | wc -l; '
'cat /proc/cpuinfo | grep ^"model name" | tail -1')
# object to collect results
res = argparse.Namespace()
res.args = args.__dict__
res.cpu_model = [
l for l in open("/proc/cpuinfo", "r")
if "model name" in l][0]
print("Load dataset")
ds = datasets.load_dataset(
dataset=args.db, compute_gt=args.compute_gt)
if args.force_IP:
ds.metric = "IP"
print(ds)
if args.nthreads != -1:
print("Set nb of threads to", args.nthreads)
faiss.omp_set_num_threads(args.nthreads)
else:
print("nb threads: ", faiss.omp_get_max_threads())
index = None
if "train" in args.todo:
print("================== Training index")
index = run_train(args, ds, res)
if args.trained_indexfile:
print("storing trained index", args.trained_indexfile)
faiss.write_index(index, args.trained_indexfile)
if "add" in args.todo:
if not index:
assert args.trained_indexfile
print("reading trained index", args.trained_indexfile)
index = faiss.read_index(args.trained_indexfile)
print("================== Adding vectors to index")
run_add(args, ds, index, res)
if args.indexfile:
print("storing", args.indexfile)
faiss.write_index(index, args.indexfile)
if "search" in args.todo:
if not index:
if args.indexfile:
print("reading index", args.indexfile)
index = faiss.read_index(args.indexfile)
elif args.indexes_to_merge:
print(f"Merging {len(args.indexes_to_merge)} indexes")
sz = 0
for fname in args.indexes_to_merge:
print(f" reading {fname} (current size {sz})")
index_i = faiss.read_index(fname)
if index is None:
index = index_i
else:
index.merge_from(index_i, index.ntotal)
sz = index.ntotal
else:
assert False, "provide --indexfile"
print("================== Searching")
run_search(args, ds, index, res)
if args.json:
print("JSON results:", json.dumps(res.__dict__))
if __name__ == "__main__":
main()