This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathdemo.py
157 lines (140 loc) · 5.32 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Copyright (c) Facebook, Inc. and its affiliates.
"""
Demo script for running PHOSA: Perceiving Human-Object Spatial Arrangements.
Usage:
# Run on image for bicycle class.
python demo.py --filename my_image.jpg --class_name bicycle
# Run on image without coarse interaction loss.
python demo.py --filename my_image.jpg --class_name bicycle --lw_inter 0
# Run on image with higher weight on depth ordering loss.
python demo.py --filename my_image.jpg --class_name bicycle --lw_depth 1.
"""
import argparse
import json
import logging
import os
import numpy as np
from PIL import Image
from phosa.bodymocap import get_bodymocap_predictor, process_mocap_predictions
from phosa.constants import DEFAULT_LOSS_WEIGHTS, IMAGE_SIZE
from phosa.global_opt import optimize_human_object, visualize_human_object
from phosa.pointrend import get_pointrend_predictor
from phosa.pose_optimization import find_optimal_poses
from phosa.utils import bbox_xy_to_wh
logger = logging.getLogger(__file__)
logging.basicConfig(
level=logging.INFO, format="%(asctime)s %(levelname)-8s %(message)s"
)
def get_args():
parser = argparse.ArgumentParser(description="Optimize object meshes w.r.t. human.")
parser.add_argument(
"--filename", default="input/000000038829.jpg", help="Path to image."
)
parser.add_argument("--output_dir", default="output", help="Output directory.")
parser.add_argument("--class_name", default="bicycle", help="Name of class.")
parser.add_argument("--mesh_index", type=int, default=0, help="Index of mesh ")
parser.add_argument(
"--lw_inter",
type=float,
default=None,
help="Loss weight for coarse interaction loss. (None: default weight)",
)
parser.add_argument(
"--lw_depth",
type=float,
default=None,
help="Loss weight for ordinal depth loss. (None: default weight)",
)
parser.add_argument(
"--lw_inter_part",
type=float,
default=None,
help="Loss weight for fine interaction loss. (None: default weight)",
)
parser.add_argument(
"--lw_sil",
type=float,
default=None,
help="Loss weight for mask loss. (None: default weight)",
)
parser.add_argument(
"--lw_collision",
type=float,
default=None,
help="Loss weight for collision loss. (None: default weight)",
)
parser.add_argument(
"--lw_scale",
type=float,
default=None,
help="Loss weight for object scale loss. (None: default weight)",
)
parser.add_argument(
"--lw_scale_person",
type=float,
default=None,
help="Loss weight for person scale loss. (None: default weight)",
)
parser.add_argument(
"--save_metadata",
action="store_true",
help="If added, saves computed metadata as filename.json.",
)
args = parser.parse_args()
logger.info(f"Calling with args: {str(args)}")
return args
def main(args):
loss_weights = DEFAULT_LOSS_WEIGHTS[args.class_name]
# Update defaults based on commandline args.
for loss_name in loss_weights.keys():
loss_weight = getattr(args, loss_name)
if hasattr(args, loss_name) and getattr(args, loss_name) is not None:
loss_weights[loss_name] = loss_weight
logger.info(f"Updated {loss_name} with {loss_weight}")
image = Image.open(args.filename).convert("RGB")
w, h = image.size
r = min(IMAGE_SIZE / w, IMAGE_SIZE / h)
w = int(r * w)
h = int(r * h)
image = np.array(image.resize((w, h)))
segmenter = get_pointrend_predictor()
instances = segmenter(image)["instances"]
# Process Human Estimations.
is_person = instances.pred_classes == 0
bboxes_person = instances[is_person].pred_boxes.tensor.cpu().numpy()
masks_person = instances[is_person].pred_masks
human_predictor = get_bodymocap_predictor()
mocap_predictions = human_predictor.regress(
image[..., ::-1], bbox_xy_to_wh(bboxes_person)
)
person_parameters = process_mocap_predictions(
mocap_predictions=mocap_predictions, bboxes=bboxes_person, masks=masks_person
)
object_parameters = find_optimal_poses(
instances=instances, class_name=args.class_name, mesh_index=args.mesh_index
)
model = optimize_human_object(
person_parameters=person_parameters,
object_parameters=object_parameters,
class_name=args.class_name,
mesh_index=args.mesh_index,
loss_weights=loss_weights,
)
frontal, top_down = visualize_human_object(model, image)
os.makedirs(args.output_dir, exist_ok=True)
file_name = os.path.basename(args.filename)
ext = file_name[file_name.rfind(".") :]
frontal_path = os.path.join(args.output_dir, file_name)
Image.fromarray(frontal).save(frontal_path)
logger.info(f"Saved rendered image to {frontal_path}.")
top_down_path = frontal_path.replace(ext, "_top" + ext)
Image.fromarray(top_down).save(top_down_path)
logger.info(f"Saved top-down image to {top_down_path}.")
if args.save_metadata:
json_path = frontal_path.replace(ext, ".json")
metadata = model.get_parameters()
with open(json_path, "w") as f:
json.dump(metadata, json_path)
logger.info(f"Saved metadata to {json_path}.")
if __name__ == "__main__":
main(get_args())