-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsequence.ts
315 lines (310 loc) · 12.4 KB
/
sequence.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import {Sequence as ISequence} from 'spica';
import {Monad} from './monad';
import {concat} from '../concat';
function cons<T, S>(value?: T, next?: S): Sequence.Data<T, S> {
switch (arguments.length) {
case 0:
return <Sequence.Data<T, S>>[];
case 1:
return <Sequence.Data<T, S>><[]>[value];
case 2:
return <Sequence.Data<T, S>>[value, next];
default:
throw invalidConsError(arguments);
}
}
export class Sequence<T, S> extends Monad<T> implements ISequence<T, S> {
public static from<T>(as: T[]): Sequence<T, number> {
return new Sequence<T, number>((i = 0, cons) => i < as.length ? cons(as[i], ++i) : cons());
}
public static write<T>(as: T[]): Sequence<T, T[]> {
return new Sequence<T, T[]>((_, cons) => as.length > 0 ? cons(as.shift(), as) : cons());
}
public static random(): Sequence<number, number>
public static random<T>(gen: () => T): Sequence<T, number>
public static random<T>(as: T[]): Sequence<T, Sequence.Iterator<number>>
public static random<T>(p: (() => number) | (() => T) | T[] = () => Math.random()): Sequence<number, number> | Sequence<T, number> | Sequence<T, Sequence.Iterator<number>> {
switch (true) {
case Array.isArray(p):
return Sequence.random()
.map(r => p[r * p.length | 0]);
default:
return new Sequence<T, number>((_, cons) => cons((<() => T>p)(), NaN));
}
}
public static zip<T, U>(a: Sequence<T, any>, b: Sequence<U, any>): Sequence<[T, U], [Sequence.Iterator<T>, Sequence.Iterator<U>]> {
return new Sequence<[T, U], [Sequence.Iterator<T>, Sequence.Iterator<U>]>(([ai, bi] = [() => a.iterate(), () => b.iterate()], cons) =>
Sequence.Iterator.when(
ai(),
() => cons(),
at =>
Sequence.Iterator.when(
bi(),
() => cons(),
bt => cons([Sequence.Thunk.value(at), Sequence.Thunk.value(bt)], [Sequence.Thunk.iterator(at), Sequence.Thunk.iterator(bt)]))));
}
public static union<T>(cmp: (a: T, b: T) => number, ss: Sequence<T, any>[]): Sequence<T, [Sequence.Iterator<T>, Sequence.Iterator<T>]> {
return ss.reduce((a, b) => union(cmp, a, b));
function union<T>(cmp: (a: T, b: T) => number, a: Sequence<T, any>, b: Sequence<T, any>): Sequence<T, [Sequence.Iterator<T>, Sequence.Iterator<T>]> {
return new Sequence<T, [Sequence.Iterator<T>, Sequence.Iterator<T>]>(([ai, bi] = [() => a.iterate(), () => b.iterate()], cons) =>
Sequence.Iterator.when(
ai(),
() =>
Sequence.Iterator.when(
bi(),
() => cons(),
bt => cons(Sequence.Thunk.value(bt), [Sequence.Iterator.done, Sequence.Thunk.iterator(bt)])),
at =>
Sequence.Iterator.when(
bi(),
() => cons(Sequence.Thunk.value(at), [Sequence.Thunk.iterator(at), Sequence.Iterator.done]),
bt => {
const result = cmp(Sequence.Thunk.value(at), Sequence.Thunk.value(bt));
if (result < 0) return cons(Sequence.Thunk.value(at), [Sequence.Thunk.iterator(at), () => bt]);
if (result > 0) return cons(Sequence.Thunk.value(bt), [() => at, Sequence.Thunk.iterator(bt)]);
return cons(Sequence.Thunk.value(at), [Sequence.Thunk.iterator(at), Sequence.Thunk.iterator(bt)]);
})));
}
}
public static intersect<T>(cmp: (a: T, b: T) => number, ss: Sequence<T, any>[]): Sequence<T, [Sequence.Iterator<T>, Sequence.Iterator<T>]> {
return ss.reduce((a, b) => intersect(cmp, a, b));
function intersect<T>(cmp: (a: T, b: T) => number, a: Sequence<T, any>, b: Sequence<T, any>): Sequence<T, [Sequence.Iterator<T>, Sequence.Iterator<T>]> {
return new Sequence<T, [Sequence.Iterator<T>, Sequence.Iterator<T>]>(([ai, bi] = [() => a.iterate(), () => b.iterate()], cons) =>
Sequence.Iterator.when(
ai(),
() => cons(),
(at, ar) =>
Sequence.Iterator.when(
bi(),
() => cons(),
(bt, br) => {
const result = cmp(Sequence.Thunk.value(at), Sequence.Thunk.value(bt));
if (result < 0) return bi = () => bt, ar();
if (result > 0) return br();
return cons(Sequence.Thunk.value(at), [Sequence.Thunk.iterator(at), Sequence.Thunk.iterator(bt)]);
})));
}
}
constructor(
private cons: (p: S, cons: (value?: T, next?: S) => Sequence.Data<T, S>) => Sequence.Data<T, S>,
private memory?: Map<number, Sequence.Data<T, S>>
) {
super();
void Object.freeze(this);
}
public iterate(): Sequence.Thunk<T> {
return this.iterate_();
}
private iterate_(p?: S, i = 0): Sequence.Thunk<T> {
const data = this.memory
? this.memory.has(i)
? this.memory.get(i)
: this.memory.set(i, this.cons(p, cons)).get(i)
: this.cons(p, cons);
switch (data.length) {
case 0:
return <Sequence.Thunk<T>>[
void 0,
Sequence.Iterator.done,
-1
];
case 1:
return <Sequence.Thunk<T>>[
data[0],
() => Sequence.Iterator.done(),
i
];
case 2:
return <Sequence.Thunk<T>>[
data[0],
() => this.iterate_(data[1], i + 1),
i
];
default:
throw invalidDataError(data);
}
}
public memoize(map: Map<number, Sequence.Data<T, S>> = this.memory || new Map<number, Sequence.Data<T, S>>()): Sequence<T, S> {
return new Sequence<T, S>(this.cons, this.memory || map);
}
public read(): T[] {
const acc: T[] = [];
let iter = () => this.iterate();
while (true) {
const thunk = iter();
if (!Sequence.isIterable(thunk)) return acc;
void concat(acc, [Sequence.Thunk.value(thunk)]);
iter = Sequence.Thunk.iterator(thunk);
}
}
public fmap<U>(f: (p: T) => U): Sequence<U, Sequence.Iterator<T>> {
return new Sequence<U, Sequence.Iterator<T>>((iter = () => this.iterate()) =>
Sequence.Iterator.when(
iter(),
() => cons<U, Sequence.Iterator<T>>(),
thunk => cons<U, Sequence.Iterator<T>>(f(Sequence.Thunk.value(thunk)), Sequence.Thunk.iterator(thunk))));
}
public bind<U>(f: (p: T) => Sequence<U, any>): Sequence<U, [Sequence.Iterator<T>, Sequence.Iterator<U>]> {
return new Sequence<U, [Sequence.Iterator<T>, Sequence.Iterator<U>]>(([ai, bi] = [() => this.iterate(), Sequence.Iterator.done], cons) =>
Sequence.Iterator.when(
ai(),
() => cons(),
(at, recur) => {
bi = bi === Sequence.Iterator.done
? () => f(Sequence.Thunk.value(at)).iterate()
: bi;
return Sequence.Iterator.when(
bi(),
() => (bi = Sequence.Iterator.done, recur()),
bt => cons(Sequence.Thunk.value(bt), [() => at, Sequence.Thunk.iterator(bt)]));
}));
}
public filterM(f: (p: T) => Sequence<boolean, any>): Sequence<T[], [Sequence.Iterator<T>, Sequence.Iterator<T[]>]> {
return this
.take(1)
.bind(() => {
const xs = this.read();
switch (xs.length) {
case 0:
return Sequence.from<T[]>([[]]);
default: {
const x = xs.shift();
return f(x)
.bind(b =>
b
? xs.length === 0
? Sequence.from<T[]>([[x]])
: Sequence.from(xs).filterM(f).fmap(ys => concat([x], ys))
: xs.length === 0
? Sequence.from<T[]>([[]])
: Sequence.from(xs).filterM(f));
}
}
});
}
public mapM<U>(f: (p: T) => Sequence<U, any>): Sequence<U[], [Sequence.Iterator<T>, Sequence.Iterator<U[]>]> {
return this
.take(1)
.bind(() => {
const xs = this.read();
switch (xs.length) {
case 0:
return Sequence.from<U[]>([]);
default: {
const x = xs.shift();
return f(x)
.bind(y =>
xs.length === 0
? Sequence.from<U[]>([[y]])
: Sequence.from(xs).mapM(f).fmap(ys => concat([y], ys)));
}
}
});
}
public map<U>(f: (p: T, i: number) => U): Sequence<U, Sequence.Iterator<T>> {
return new Sequence<U, Sequence.Iterator<T>>((iter = () => this.iterate()) =>
Sequence.Iterator.when(
iter(),
() => cons<U, Sequence.Iterator<T>>(),
thunk => cons<U, Sequence.Iterator<T>>(f(Sequence.Thunk.value(thunk), Sequence.Thunk.index(thunk)), Sequence.Thunk.iterator(thunk))));
}
public scan<U>(f: (b: U, a: T) => U, z: U): Sequence<U, [U, Sequence.Iterator<T>]> {
return new Sequence<U, [U, Sequence.Iterator<T>]>(([prev = z, iter = () => this.iterate()] = [void 0, void 0]) =>
Sequence.Iterator.when(
iter(),
() => cons<U, [U, Sequence.Iterator<T>]>(),
thunk =>
cons<U, [U, Sequence.Iterator<T>]>(
prev = f(prev, Sequence.Thunk.value(thunk)),
[prev, Sequence.Thunk.iterator(thunk)])));
}
public until(f: (p: T) => boolean): Sequence<T, Sequence.Iterator<T>> {
return new Sequence<T, Sequence.Iterator<T>>((iter = () => this.iterate(), cons) =>
Sequence.Iterator.when(
iter(),
() => cons(),
thunk =>
f(Sequence.Thunk.value(thunk))
? cons(Sequence.Thunk.value(thunk))
: cons(Sequence.Thunk.value(thunk), Sequence.Thunk.iterator(thunk))));
}
public take(n: number): Sequence<T, Sequence.Iterator<T>> {
return this.takeWhile((_, i) => i < n);
}
public drop(n: number): Sequence<T, Sequence.Iterator<T>> {
return this.dropWhile((_, i) => i < n);
}
public takeWhile(f: (p: T, i: number) => boolean): Sequence<T, Sequence.Iterator<T>> {
return new Sequence<T, Sequence.Iterator<T>>((iter = () => this.iterate(), cons) =>
Sequence.Iterator.when(
iter(),
() => cons(),
thunk =>
f(Sequence.Thunk.value(thunk), Sequence.Thunk.index(thunk))
? cons(Sequence.Thunk.value(thunk), Sequence.Thunk.iterator(thunk))
: cons()));
}
public dropWhile(f: (p: T, i: number) => boolean): Sequence<T, Sequence.Iterator<T>> {
return new Sequence<T, Sequence.Iterator<T>>((iter = () => this.iterate(), cons) =>
Sequence.Iterator.when(
iter(),
() => cons(),
(thunk, recur) =>
f(Sequence.Thunk.value(thunk), Sequence.Thunk.index(thunk))
? recur()
: cons(Sequence.Thunk.value(thunk), Sequence.Thunk.iterator(thunk))));
}
public filter(f: (p: T, i: number) => boolean): Sequence<T, Sequence.Iterator<T>> {
return new Sequence<T, Sequence.Iterator<T>>((iter = () => this.iterate(), cons) =>
Sequence.Iterator.when(
iter(),
() => cons(),
(thunk, recur) =>
f(Sequence.Thunk.value(thunk), Sequence.Thunk.index(thunk))
? cons(Sequence.Thunk.value(thunk), Sequence.Thunk.iterator(thunk))
: recur()));
}
}
export namespace Sequence {
export type Data<T, S> = [T, S];
export type Thunk<T> = [T, Iterator<T>, number];
export namespace Thunk {
export function value<T>(thunk: Thunk<T>): T {
return thunk[0];
}
export function iterator<T>(thunk: Thunk<T>): Iterator<T> {
return thunk[1];
}
export function index<T>(thunk: Thunk<T>): number {
return thunk[2];
}
}
export type Iterator<T> = () => Thunk<T>;
export namespace Iterator {
export const done: Sequence.Iterator<any> = () => <Sequence.Thunk<any>>[void 0, done, -1];
export function when<T, U>(
thunk: Thunk<T>,
caseDone: (thunk: Thunk<T>) => U,
caseIterable: (thunk: Thunk<T>, recur: () => U) => U
): U {
return Sequence.isIterable(thunk)
? caseIterable(thunk, () => when(Thunk.iterator(thunk)(), caseDone, caseIterable))
: caseDone(thunk);
}
}
export function isIterable(thunk: Thunk<any>): boolean {
return Thunk.iterator(thunk) !== Iterator.done;
}
}
function invalidConsError(args: IArguments): TypeError {
console.error(args, args.length, args[0], args[1]);
return new TypeError(`Spica: Sequence: Invalid parameters of cons.`);
}
function invalidDataError(data: Sequence.Data<any, any>): TypeError {
console.error(data);
return new TypeError(`Spica: Sequence: Invalid data.`);
}
function invalidThunkError(thunk: Sequence.Thunk<any>): TypeError {
console.error(thunk);
return new TypeError(`Spica: Sequence: Invalid thunk.`);
}