Skip to content

Latest commit

 

History

History
83 lines (63 loc) · 3.04 KB

README.md

File metadata and controls

83 lines (63 loc) · 3.04 KB

PyTorch Distributed K-FAC Preconditioner

DOI

Distributed K-FAC Preconditioner in PyTorch using Horovod for communication. This is the code for the paper "Convolutional Neural Network Training with Distributed K-FAC." For torch.distributed support, see the experimental branch.

The KFAC code was originally forked from Chaoqi Wang's KFAC-PyTorch. The ResNet models for Cifar10 are from Yerlan Idelbayev's pytorch_resnet_cifar10. The CIFAR-10 and ImageNet-1k training scripts are modeled afer Horovod's example PyTorch training scripts.

Install

Requirements

PyTorch and Horovod are required to use K-FAC.

This code is validated to run with PyTorch v1.1, Horovod 0.19.0, CUDA 10.0/1, CUDNN 7.6.4, and NCCL 2.4.7.

Installation

$ git clone https://github.com/gpauloski/kfac_pytorch.git
$ cd kfac_pytorch
$ pip install .

Usage

The K-FAC Preconditioner can be easily added to exisiting training scripts that use horovod.DistributedOptimizer().

from kfac import KFAC
... 
optimizer = optim.SGD(model.parameters(), ...)
optimizer = hvd.DistributedOptimizer(optimizer, ...)
preconditioner = KFAC(model, ...)
... 
for i, (data, target) in enumerate(train_loader):
    optimizer.zero_grad()
    output = model(data)
    loss = criterion(output, target)
    loss.backward()
    optimizer.synchronize()
    preconditioner.step()
    with optimizer.skip_synchronize():
        optimizer.step()
...

Note that the K-FAC Preconditioner expects gradients to be averaged across workers before calling preconditioner.step() so we call optimizer.synchronize() before hand (Normally optimizer.synchronize() is not called until optimizer.step()).

Example Scripts

Example scripts for K-FAC + SGD training on CIFAR-10 and ImageNet-1k are provided.

CIFAR-10

$ mpiexec -hostfile /path/to/hostfile -N 4 python examples/pytorch_cifar10_resnet.py \
      --lr 0.1 --epochs 100 --kfac-update-freq 10 --model resnet32 --lr-decay 35 75 90

ImageNet-1k

$ mpiexec -hostfile /path/to/hostfile -N 4 python examples/pytorch_imagenet_resnet.py \
      --lr 0.0125 --epochs 55 --kfac-update-freq 10 --model resnet32 --lr-decay 25 35 40 45 50

See python examples/pytorch_{dataset}_resnet.py --help for a full list of hyper-parameters. Note: if --kfac-update-freq 0, the K-FAC Preconditioning is skipped entirely, i.e. training is just with normal SGD.

Citation

@article{pauloski2020convolutional,
    title={Convolutional Neural Network Training with Distributed K-FAC},
    author={J. Gregory Pauloski and Zhao Zhang and Lei Huang and Weijia Xu and Ian T. Foster},
    year={2020},
    pages={to appear in the proceedings of SC20},
    eprint={2007.00784},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}