-
Notifications
You must be signed in to change notification settings - Fork 170
/
Copy pathpartition_version.cc
708 lines (649 loc) · 25.9 KB
/
partition_version.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
/*
* Copyright (C) 2016 ScyllaDB
*/
/*
* This file is part of Scylla.
*
* Scylla is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Scylla is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Scylla. If not, see <http://www.gnu.org/licenses/>.
*/
#include <boost/range/algorithm/heap_algorithm.hpp>
#include <seastar/util/defer.hh>
#include "partition_version.hh"
#include "row_cache.hh"
#include "partition_snapshot_row_cursor.hh"
#include "partition_snapshot_reader.hh"
#include "utils/coroutine.hh"
#include "real_dirty_memory_accounter.hh"
static void remove_or_mark_as_unique_owner(partition_version* current, mutation_cleaner* cleaner)
{
while (current && !current->is_referenced()) {
auto next = current->next();
current->erase();
if (cleaner) {
cleaner->destroy_gently(*current);
} else {
current_allocator().destroy(current);
}
current = next;
}
if (current) {
current->back_reference().mark_as_unique_owner();
}
}
partition_version::partition_version(partition_version&& pv) noexcept
: anchorless_list_base_hook(std::move(pv))
, _backref(pv._backref)
, _partition(std::move(pv._partition))
{
if (_backref) {
_backref->_version = this;
}
pv._backref = nullptr;
}
partition_version& partition_version::operator=(partition_version&& pv) noexcept
{
if (this != &pv) {
this->~partition_version();
new (this) partition_version(std::move(pv));
}
return *this;
}
partition_version::~partition_version()
{
if (_backref) {
_backref->_version = nullptr;
}
}
stop_iteration partition_version::clear_gently(cache_tracker* tracker) noexcept {
return _partition.clear_gently(tracker);
}
size_t partition_version::size_in_allocator(const schema& s, allocation_strategy& allocator) const {
return allocator.object_memory_size_in_allocator(this) +
partition().external_memory_usage(s);
}
namespace {
GCC6_CONCEPT(
// A functor which transforms objects from Domain into objects from CoDomain
template<typename U, typename Domain, typename CoDomain>
concept bool Mapper() {
return requires(U obj, const Domain& src) {
{ obj(src) } -> const CoDomain&
};
}
// A functor which merges two objects from Domain into one. The result is stored in the first argument.
template<typename U, typename Domain>
concept bool Reducer() {
return requires(U obj, Domain& dst, const Domain& src) {
{ obj(dst, src) } -> void;
};
}
)
// Calculates the value of particular part of mutation_partition represented by
// the version chain starting from v.
// |map| extracts the part from each version.
// |reduce| Combines parts from the two versions.
template <typename Result, typename Map, typename Initial, typename Reduce>
GCC6_CONCEPT(
requires Mapper<Map, mutation_partition, Result>() && Reducer<Reduce, Result>()
)
inline Result squashed(const partition_version_ref& v, Map&& map, Initial&& initial, Reduce&& reduce) {
const partition_version* this_v = &*v;
partition_version* it = v->last();
Result r = initial(map(it->partition()));
while (it != this_v) {
it = it->prev();
reduce(r, map(it->partition()));
}
return r;
}
template <typename Result, typename Map, typename Reduce>
GCC6_CONCEPT(
requires Mapper<Map, mutation_partition, Result>() && Reducer<Reduce, Result>()
)
inline Result squashed(const partition_version_ref& v, Map&& map, Reduce&& reduce) {
return squashed<Result>(v, map,
[] (auto&& o) -> decltype(auto) { return std::forward<decltype(o)>(o); },
reduce);
}
}
::static_row partition_snapshot::static_row(bool digest_requested) const {
return ::static_row(::squashed<row>(version(),
[&] (const mutation_partition& mp) -> const row& {
if (digest_requested) {
mp.static_row().prepare_hash(*_schema, column_kind::static_column);
}
return mp.static_row();
},
[this] (const row& r) { return row(*_schema, column_kind::static_column, r); },
[this] (row& a, const row& b) { a.apply(*_schema, column_kind::static_column, b); }));
}
bool partition_snapshot::static_row_continuous() const {
return version()->partition().static_row_continuous();
}
tombstone partition_snapshot::partition_tombstone() const {
return ::squashed<tombstone>(version(),
[] (const mutation_partition& mp) { return mp.partition_tombstone(); },
[] (tombstone& a, tombstone b) { a.apply(b); });
}
mutation_partition partition_snapshot::squashed() const {
return ::squashed<mutation_partition>(version(),
[] (const mutation_partition& mp) -> const mutation_partition& { return mp; },
[this] (const mutation_partition& mp) { return mutation_partition(*_schema, mp); },
[this] (mutation_partition& a, const mutation_partition& b) { a.apply(*_schema, b, *_schema); });
}
tombstone partition_entry::partition_tombstone() const {
return ::squashed<tombstone>(_version,
[] (const mutation_partition& mp) { return mp.partition_tombstone(); },
[] (tombstone& a, tombstone b) { a.apply(b); });
}
partition_snapshot::~partition_snapshot() {
with_allocator(region().allocator(), [this] {
if (_version && _version.is_unique_owner()) {
auto v = &*_version;
_version = {};
remove_or_mark_as_unique_owner(v, _cleaner);
} else if (_entry) {
_entry->_snapshot = nullptr;
}
});
}
void merge_versions(const schema& s, mutation_partition& newer, mutation_partition&& older, cache_tracker* tracker) {
older.apply_monotonically(s, std::move(newer), tracker);
newer = std::move(older);
}
stop_iteration partition_snapshot::merge_partition_versions() {
partition_version_ref& v = version();
if (!v.is_unique_owner()) {
// Shift _version to the oldest unreferenced version and then keep merging left hand side into it.
// This is good for performance because in case we were at the latest version
// we leave it for incoming writes and they don't have to create a new one.
partition_version* current = &*v;
while (current->next() && !current->next()->is_referenced()) {
current = current->next();
_version = partition_version_ref(*current);
}
while (auto prev = current->prev()) {
region().allocator().invalidate_references();
if (current->partition().apply_monotonically(*schema(), std::move(prev->partition()), _tracker, is_preemptible::yes) == stop_iteration::no) {
return stop_iteration::no;
}
if (prev->is_referenced()) {
_version.release();
prev->back_reference() = partition_version_ref(*current, prev->back_reference().is_unique_owner());
current_allocator().destroy(prev);
return stop_iteration::yes;
}
current_allocator().destroy(prev);
}
}
return stop_iteration::yes;
}
stop_iteration partition_snapshot::slide_to_oldest() noexcept {
partition_version_ref& v = version();
if (v.is_unique_owner()) {
return stop_iteration::yes;
}
if (_entry) {
_entry->_snapshot = nullptr;
_entry = nullptr;
}
partition_version* current = &*v;
while (current->next() && !current->next()->is_referenced()) {
current = current->next();
_version = partition_version_ref(*current);
}
return current->prev() ? stop_iteration::no : stop_iteration::yes;
}
unsigned partition_snapshot::version_count()
{
unsigned count = 0;
for (auto&& v : versions()) {
(void)v;
count++;
}
return count;
}
partition_entry::partition_entry(mutation_partition mp)
{
auto new_version = current_allocator().construct<partition_version>(std::move(mp));
_version = partition_version_ref(*new_version);
}
partition_entry::partition_entry(partition_entry::evictable_tag, const schema& s, mutation_partition&& mp)
: partition_entry([&] {
mp.ensure_last_dummy(s);
return std::move(mp);
}())
{ }
partition_entry partition_entry::make_evictable(const schema& s, mutation_partition&& mp) {
return {evictable_tag(), s, std::move(mp)};
}
partition_entry partition_entry::make_evictable(const schema& s, const mutation_partition& mp) {
return make_evictable(s, mutation_partition(s, mp));
}
partition_entry::~partition_entry() {
if (!_version) {
return;
}
if (_snapshot) {
_snapshot->_version = std::move(_version);
_snapshot->_version.mark_as_unique_owner();
_snapshot->_entry = nullptr;
} else {
auto v = &*_version;
_version = { };
remove_or_mark_as_unique_owner(v, no_cleaner);
}
}
stop_iteration partition_entry::clear_gently(cache_tracker* tracker) noexcept {
if (!_version) {
return stop_iteration::yes;
}
if (_snapshot) {
_snapshot->_version = std::move(_version);
_snapshot->_version.mark_as_unique_owner();
_snapshot->_entry = nullptr;
return stop_iteration::yes;
}
partition_version* v = &*_version;
_version = {};
while (v) {
if (v->is_referenced()) {
v->back_reference().mark_as_unique_owner();
break;
}
auto next = v->next();
if (v->clear_gently(tracker) == stop_iteration::no) {
_version = partition_version_ref(*v);
return stop_iteration::no;
}
current_allocator().destroy(&*v);
v = next;
}
return stop_iteration::yes;
}
void partition_entry::set_version(partition_version* new_version)
{
if (_snapshot) {
_snapshot->_version = std::move(_version);
_snapshot->_entry = nullptr;
}
_snapshot = nullptr;
_version = partition_version_ref(*new_version);
}
partition_version& partition_entry::add_version(const schema& s, cache_tracker* tracker) {
// Every evictable version must have a dummy entry at the end so that
// it can be tracked in the LRU. It is also needed to allow old versions
// to stay around (with tombstones and static rows) after fully evicted.
// Such versions must be fully discontinuous, and thus have a dummy at the end.
auto new_version = tracker
? current_allocator().construct<partition_version>(mutation_partition::make_incomplete(s))
: current_allocator().construct<partition_version>(mutation_partition(s.shared_from_this()));
new_version->partition().set_static_row_continuous(_version->partition().static_row_continuous());
new_version->insert_before(*_version);
set_version(new_version);
if (tracker) {
tracker->insert(*new_version);
}
return *new_version;
}
void partition_entry::apply(const schema& s, const mutation_partition& mp, const schema& mp_schema)
{
apply(s, mutation_partition(s, mp), mp_schema);
}
void partition_entry::apply(const schema& s, mutation_partition&& mp, const schema& mp_schema)
{
if (s.version() != mp_schema.version()) {
mp.upgrade(mp_schema, s);
}
auto new_version = current_allocator().construct<partition_version>(std::move(mp));
if (!_snapshot) {
try {
_version->partition().apply_monotonically(s, std::move(new_version->partition()), no_cache_tracker);
current_allocator().destroy(new_version);
return;
} catch (...) {
// fall through
}
}
new_version->insert_before(*_version);
set_version(new_version);
}
// Iterates over all rows in mutation represented by partition_entry.
// It abstracts away the fact that rows may be spread across multiple versions.
class partition_entry::rows_iterator final {
struct version {
mutation_partition::rows_type::iterator current_row;
mutation_partition::rows_type* rows;
bool can_move;
struct compare {
const rows_entry::tri_compare& _cmp;
public:
explicit compare(const rows_entry::tri_compare& cmp) : _cmp(cmp) { }
bool operator()(const version& a, const version& b) const {
return _cmp(*a.current_row, *b.current_row) > 0;
}
};
};
const schema& _schema;
rows_entry::tri_compare _rows_cmp;
rows_entry::compare _rows_less_cmp;
version::compare _version_cmp;
std::vector<version> _heap;
std::vector<version> _current_row;
bool _current_row_dummy;
public:
rows_iterator(partition_version* version, const schema& schema)
: _schema(schema)
, _rows_cmp(schema)
, _rows_less_cmp(schema)
, _version_cmp(_rows_cmp)
{
bool can_move = true;
while (version) {
can_move &= !version->is_referenced();
auto& rows = version->partition().clustered_rows();
if (!rows.empty()) {
_heap.push_back({rows.begin(), &rows, can_move});
}
version = version->next();
}
boost::range::make_heap(_heap, _version_cmp);
move_to_next_row();
}
bool done() const {
return _current_row.empty();
}
// Return clustering key of the current row in source.
// Valid only when !is_dummy().
const clustering_key& key() const {
return _current_row[0].current_row->key();
}
position_in_partition_view position() const {
return _current_row[0].current_row->position();
}
bool is_dummy() const {
return _current_row_dummy;
}
template<typename RowConsumer>
void consume_row(RowConsumer&& consumer) {
assert(!_current_row.empty());
// versions in _current_row are not ordered but it is not a problem
// due to the fact that all rows are continuous.
for (version& v : _current_row) {
if (!v.can_move) {
consumer(deletable_row(_schema, v.current_row->row()));
} else {
consumer(std::move(v.current_row->row()));
}
}
}
void remove_current_row_when_possible() {
assert(!_current_row.empty());
auto deleter = current_deleter<rows_entry>();
for (version& v : _current_row) {
if (v.can_move) {
v.rows->erase_and_dispose(v.current_row, deleter);
}
}
}
void move_to_next_row() {
_current_row.clear();
_current_row_dummy = true;
while (!_heap.empty() &&
(_current_row.empty() || _rows_cmp(*_current_row[0].current_row, *_heap[0].current_row) == 0)) {
boost::range::pop_heap(_heap, _version_cmp);
auto& curr = _heap.back();
_current_row.push_back({curr.current_row, curr.rows, curr.can_move});
_current_row_dummy &= bool(curr.current_row->dummy());
++curr.current_row;
if (curr.current_row == curr.rows->end()) {
_heap.pop_back();
} else {
boost::range::push_heap(_heap, _version_cmp);
}
}
}
};
coroutine partition_entry::apply_to_incomplete(const schema& s,
partition_entry&& pe,
const schema& pe_schema,
mutation_cleaner& pe_cleaner,
logalloc::allocating_section& alloc,
logalloc::region& reg,
cache_tracker& tracker,
partition_snapshot::phase_type phase,
real_dirty_memory_accounter& acc)
{
// This flag controls whether this operation may defer. It is more
// expensive to apply with deferring due to construction of snapshots and
// two-pass application, with the first pass filtering and moving data to
// the new version and the second pass merging it back once all is done.
// We cannot merge into current version because if we defer in the middle
// that may publish partial writes. Also, snapshot construction results in
// creation of garbage objects, partition_version and rows_entry. Garbage
// will yield sparse segments and add overhead due to increased LSA
// segment compaction. This becomes especially significant for small
// partitions where I saw 40% slow down.
const bool preemptible = s.clustering_key_size() > 0;
if (s.version() != pe_schema.version()) {
pe.upgrade(pe_schema.shared_from_this(), s.shared_from_this(), pe_cleaner, no_cache_tracker);
}
// When preemptible, later memtable reads could start using the snapshot before
// snapshot's writes are made visible in cache, which would cause them to miss those writes.
// So we cannot allow erasing when preemptible.
bool can_move = !preemptible && !pe._snapshot;
auto src_snp = pe.read(reg, pe_cleaner, s.shared_from_this(), no_cache_tracker);
partition_snapshot_ptr prev_snp;
if (preemptible) {
// Reads must see prev_snp until whole update completes so that writes
// are not partially visible.
prev_snp = read(reg, tracker.cleaner(), s.shared_from_this(), &tracker, phase - 1);
}
auto dst_snp = read(reg, tracker.cleaner(), s.shared_from_this(), &tracker, phase);
// Once we start updating the partition, we must keep all snapshots until the update completes,
// otherwise partial writes would be published. So the scope of snapshots must enclose the scope
// of allocating sections, so we return here to get out of the current allocating section and
// give the caller a chance to store the coroutine object. The code inside coroutine below
// runs outside allocating section.
return coroutine([&tracker, &s, &alloc, ®, &acc, can_move, preemptible,
cur = partition_snapshot_row_cursor(s, *dst_snp),
src_cur = partition_snapshot_row_cursor(s, *src_snp, can_move),
dst_snp = std::move(dst_snp),
prev_snp = std::move(prev_snp),
src_snp = std::move(src_snp),
static_done = false] () mutable {
auto&& allocator = reg.allocator();
return alloc(reg, [&] {
return with_linearized_managed_bytes([&] {
size_t dirty_size = 0;
if (!static_done) {
partition_version& dst = *dst_snp->version();
bool static_row_continuous = dst_snp->static_row_continuous();
auto current = &*src_snp->version();
while (current) {
dirty_size += allocator.object_memory_size_in_allocator(current)
+ current->partition().static_row().external_memory_usage(s, column_kind::static_column);
dst.partition().apply(current->partition().partition_tombstone());
if (static_row_continuous) {
row& static_row = dst.partition().static_row();
if (can_move) {
static_row.apply(s, column_kind::static_column,
std::move(current->partition().static_row()));
} else {
static_row.apply(s, column_kind::static_column, current->partition().static_row());
}
}
dirty_size += current->partition().row_tombstones().external_memory_usage(s);
range_tombstone_list& tombstones = dst.partition().row_tombstones();
// FIXME: defer while applying range tombstones
if (can_move) {
tombstones.apply_monotonically(s, std::move(current->partition().row_tombstones()));
} else {
tombstones.apply_monotonically(s, current->partition().row_tombstones());
}
current = current->next();
can_move &= current && !current->is_referenced();
}
acc.unpin_memory(dirty_size);
static_done = true;
}
if (!src_cur.maybe_refresh_static()) {
return stop_iteration::yes;
}
do {
auto size = src_cur.memory_usage();
if (!src_cur.dummy()) {
tracker.on_row_processed_from_memtable();
auto ropt = cur.ensure_entry_if_complete(src_cur.position());
if (ropt) {
if (!ropt->inserted) {
tracker.on_row_merged_from_memtable();
}
rows_entry& e = ropt->row;
src_cur.consume_row([&](deletable_row&& row) {
e.row().apply_monotonically(s, std::move(row));
});
} else {
tracker.on_row_dropped_from_memtable();
}
}
auto has_next = src_cur.erase_and_advance();
acc.unpin_memory(size);
if (!has_next) {
return stop_iteration::yes;
}
} while (!preemptible || !need_preempt());
return stop_iteration::no;
});
});
});
}
mutation_partition partition_entry::squashed(schema_ptr from, schema_ptr to)
{
mutation_partition mp(to);
mp.set_static_row_continuous(_version->partition().static_row_continuous());
for (auto&& v : _version->all_elements()) {
auto older = mutation_partition(*from, v.partition());
if (from->version() != to->version()) {
older.upgrade(*from, *to);
}
merge_versions(*to, mp, std::move(older), no_cache_tracker);
}
return mp;
}
mutation_partition partition_entry::squashed(const schema& s)
{
return squashed(s.shared_from_this(), s.shared_from_this());
}
void partition_entry::upgrade(schema_ptr from, schema_ptr to, mutation_cleaner& cleaner, cache_tracker* tracker)
{
auto new_version = current_allocator().construct<partition_version>(squashed(from, to));
auto old_version = &*_version;
set_version(new_version);
if (tracker) {
tracker->insert(*new_version);
}
remove_or_mark_as_unique_owner(old_version, &cleaner);
}
partition_snapshot_ptr partition_entry::read(logalloc::region& r,
mutation_cleaner& cleaner, schema_ptr entry_schema, cache_tracker* tracker, partition_snapshot::phase_type phase)
{
if (_snapshot) {
if (_snapshot->_phase == phase) {
return _snapshot->shared_from_this();
} else if (phase < _snapshot->_phase) {
// If entry is being updated, we will get reads for non-latest phase, and
// they must attach to the non-current version.
partition_version* second = _version->next();
assert(second && second->is_referenced());
auto snp = partition_snapshot::container_of(second->_backref).shared_from_this();
assert(phase == snp->_phase);
return snp;
} else { // phase > _snapshot->_phase
with_allocator(r.allocator(), [&] {
add_version(*entry_schema, tracker);
});
}
}
auto snp = make_lw_shared<partition_snapshot>(entry_schema, r, cleaner, this, tracker, phase);
_snapshot = snp.get();
return partition_snapshot_ptr(std::move(snp));
}
std::vector<range_tombstone>
partition_snapshot::range_tombstones(position_in_partition_view start, position_in_partition_view end)
{
partition_version* v = &*version();
if (!v->next()) {
return boost::copy_range<std::vector<range_tombstone>>(
v->partition().row_tombstones().slice(*_schema, start, end));
}
range_tombstone_list list(*_schema);
while (v) {
for (auto&& rt : v->partition().row_tombstones().slice(*_schema, start, end)) {
list.apply(*_schema, rt);
}
v = v->next();
}
return boost::copy_range<std::vector<range_tombstone>>(list.slice(*_schema, start, end));
}
std::vector<range_tombstone>
partition_snapshot::range_tombstones()
{
return range_tombstones(
position_in_partition_view::before_all_clustered_rows(),
position_in_partition_view::after_all_clustered_rows());
}
std::ostream& operator<<(std::ostream& out, const partition_entry& e) {
out << "{";
bool first = true;
if (e._version) {
const partition_version* v = &*e._version;
while (v) {
if (!first) {
out << ", ";
}
if (v->is_referenced()) {
out << "(*) ";
}
out << v->partition();
v = v->next();
first = false;
}
}
out << "}";
return out;
}
void partition_entry::evict(mutation_cleaner& cleaner) noexcept {
if (!_version) {
return;
}
if (_snapshot) {
_snapshot->_version = std::move(_version);
_snapshot->_version.mark_as_unique_owner();
_snapshot->_entry = nullptr;
} else {
auto v = &*_version;
_version = { };
remove_or_mark_as_unique_owner(v, &cleaner);
}
}
partition_snapshot_ptr::~partition_snapshot_ptr() {
if (_snp) {
auto&& cleaner = _snp->cleaner();
auto snp = _snp.release();
if (snp) {
cleaner.merge_and_destroy(*snp.release());
}
}
}