-
Notifications
You must be signed in to change notification settings - Fork 170
/
Copy pathrange.hh
732 lines (678 loc) · 30 KB
/
range.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
/*
* Copyright (C) 2015 ScyllaDB
*/
/*
* This file is part of Scylla.
*
* Scylla is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Scylla is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Scylla. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "stdx.hh"
#include <list>
#include <vector>
#include <experimental/optional>
#include <iosfwd>
#include <boost/range/algorithm/copy.hpp>
#include <boost/range/adaptor/sliced.hpp>
#include <boost/range/adaptor/transformed.hpp>
#include <seastar/util/gcc6-concepts.hh>
template<typename T>
class range_bound {
T _value;
bool _inclusive;
public:
range_bound(T value, bool inclusive = true)
: _value(std::move(value))
, _inclusive(inclusive)
{ }
const T& value() const & { return _value; }
T&& value() && { return std::move(_value); }
bool is_inclusive() const { return _inclusive; }
bool operator==(const range_bound& other) const {
return (_value == other._value) && (_inclusive == other._inclusive);
}
template<typename Comparator>
bool equal(const range_bound& other, Comparator&& cmp) const {
return _inclusive == other._inclusive && cmp(_value, other._value) == 0;
}
};
template<typename T>
class nonwrapping_range;
// A range which can have inclusive, exclusive or open-ended bounds on each end.
// The end bound can be smaller than the start bound.
template<typename T>
class wrapping_range {
template <typename U>
using optional = std::experimental::optional<U>;
public:
using bound = range_bound<T>;
template <typename Transformer>
using transformed_type = typename std::remove_cv_t<std::remove_reference_t<std::result_of_t<Transformer(T)>>>;
private:
optional<bound> _start;
optional<bound> _end;
bool _singular;
public:
wrapping_range(optional<bound> start, optional<bound> end, bool singular = false)
: _start(std::move(start))
, _singular(singular) {
if (!_singular) {
_end = std::move(end);
}
}
wrapping_range(T value)
: _start(bound(std::move(value), true))
, _end()
, _singular(true)
{ }
wrapping_range() : wrapping_range({}, {}) { }
private:
// Bound wrappers for compile-time dispatch and safety.
struct start_bound_ref { const optional<bound>& b; };
struct end_bound_ref { const optional<bound>& b; };
start_bound_ref start_bound() const { return { start() }; }
end_bound_ref end_bound() const { return { end() }; }
template<typename Comparator>
static bool greater_than_or_equal(end_bound_ref end, start_bound_ref start, Comparator&& cmp) {
return !end.b || !start.b || cmp(end.b->value(), start.b->value())
>= (!end.b->is_inclusive() || !start.b->is_inclusive());
}
template<typename Comparator>
static bool less_than(end_bound_ref end, start_bound_ref start, Comparator&& cmp) {
return !greater_than_or_equal(end, start, cmp);
}
template<typename Comparator>
static bool less_than_or_equal(start_bound_ref first, start_bound_ref second, Comparator&& cmp) {
return !first.b || (second.b && cmp(first.b->value(), second.b->value())
<= -(!first.b->is_inclusive() && second.b->is_inclusive()));
}
template<typename Comparator>
static bool less_than(start_bound_ref first, start_bound_ref second, Comparator&& cmp) {
return second.b && (!first.b || cmp(first.b->value(), second.b->value())
< (first.b->is_inclusive() && !second.b->is_inclusive()));
}
template<typename Comparator>
static bool greater_than_or_equal(end_bound_ref first, end_bound_ref second, Comparator&& cmp) {
return !first.b || (second.b && cmp(first.b->value(), second.b->value())
>= (!first.b->is_inclusive() && second.b->is_inclusive()));
}
public:
// the point is before the range (works only for non wrapped ranges)
// Comparator must define a total ordering on T.
template<typename Comparator>
bool before(const T& point, Comparator&& cmp) const {
assert(!is_wrap_around(cmp));
if (!start()) {
return false; //open start, no points before
}
auto r = cmp(point, start()->value());
if (r < 0) {
return true;
}
if (!start()->is_inclusive() && r == 0) {
return true;
}
return false;
}
// the point is after the range (works only for non wrapped ranges)
// Comparator must define a total ordering on T.
template<typename Comparator>
bool after(const T& point, Comparator&& cmp) const {
assert(!is_wrap_around(cmp));
if (!end()) {
return false; //open end, no points after
}
auto r = cmp(end()->value(), point);
if (r < 0) {
return true;
}
if (!end()->is_inclusive() && r == 0) {
return true;
}
return false;
}
// check if two ranges overlap.
// Comparator must define a total ordering on T.
template<typename Comparator>
bool overlaps(const wrapping_range& other, Comparator&& cmp) const {
bool this_wraps = is_wrap_around(cmp);
bool other_wraps = other.is_wrap_around(cmp);
if (this_wraps && other_wraps) {
return true;
} else if (this_wraps) {
auto unwrapped = unwrap();
return other.overlaps(unwrapped.first, cmp) || other.overlaps(unwrapped.second, cmp);
} else if (other_wraps) {
auto unwrapped = other.unwrap();
return overlaps(unwrapped.first, cmp) || overlaps(unwrapped.second, cmp);
}
// No range should reach this point as wrap around.
assert(!this_wraps);
assert(!other_wraps);
// if both this and other have an open start, the two ranges will overlap.
if (!start() && !other.start()) {
return true;
}
return greater_than_or_equal(end_bound(), other.start_bound(), cmp)
&& greater_than_or_equal(other.end_bound(), start_bound(), cmp);
}
static wrapping_range make(bound start, bound end) {
return wrapping_range({std::move(start)}, {std::move(end)});
}
static wrapping_range make_open_ended_both_sides() {
return {{}, {}};
}
static wrapping_range make_singular(T value) {
return {std::move(value)};
}
static wrapping_range make_starting_with(bound b) {
return {{std::move(b)}, {}};
}
static wrapping_range make_ending_with(bound b) {
return {{}, {std::move(b)}};
}
bool is_singular() const {
return _singular;
}
bool is_full() const {
return !_start && !_end;
}
void reverse() {
if (!_singular) {
std::swap(_start, _end);
}
}
const optional<bound>& start() const {
return _start;
}
const optional<bound>& end() const {
return _singular ? _start : _end;
}
// Range is a wrap around if end value is smaller than the start value
// or they're equal and at least one bound is not inclusive.
// Comparator must define a total ordering on T.
template<typename Comparator>
bool is_wrap_around(Comparator&& cmp) const {
if (_end && _start) {
auto r = cmp(end()->value(), start()->value());
return r < 0
|| (r == 0 && (!start()->is_inclusive() || !end()->is_inclusive()));
} else {
return false; // open ended range or singular range don't wrap around
}
}
// Converts a wrap-around range to two non-wrap-around ranges.
// The returned ranges are not overlapping and ordered.
// Call only when is_wrap_around().
std::pair<wrapping_range, wrapping_range> unwrap() const {
return {
{ {}, end() },
{ start(), {} }
};
}
// the point is inside the range
// Comparator must define a total ordering on T.
template<typename Comparator>
bool contains(const T& point, Comparator&& cmp) const {
if (is_wrap_around(cmp)) {
auto unwrapped = unwrap();
return unwrapped.first.contains(point, cmp)
|| unwrapped.second.contains(point, cmp);
} else {
return !before(point, cmp) && !after(point, cmp);
}
}
// Returns true iff all values contained by other are also contained by this.
// Comparator must define a total ordering on T.
template<typename Comparator>
bool contains(const wrapping_range& other, Comparator&& cmp) const {
bool this_wraps = is_wrap_around(cmp);
bool other_wraps = other.is_wrap_around(cmp);
if (this_wraps && other_wraps) {
return cmp(start()->value(), other.start()->value())
<= -(!start()->is_inclusive() && other.start()->is_inclusive())
&& cmp(end()->value(), other.end()->value())
>= (!end()->is_inclusive() && other.end()->is_inclusive());
}
if (!this_wraps && !other_wraps) {
return less_than_or_equal(start_bound(), other.start_bound(), cmp)
&& greater_than_or_equal(end_bound(), other.end_bound(), cmp);
}
if (other_wraps) { // && !this_wraps
return !start() && !end();
}
// !other_wraps && this_wraps
return (other.start() && cmp(start()->value(), other.start()->value())
<= -(!start()->is_inclusive() && other.start()->is_inclusive()))
|| (other.end() && cmp(end()->value(), other.end()->value())
>= (!end()->is_inclusive() && other.end()->is_inclusive()));
}
// Returns ranges which cover all values covered by this range but not covered by the other range.
// Ranges are not overlapping and ordered.
// Comparator must define a total ordering on T.
template<typename Comparator>
std::vector<wrapping_range> subtract(const wrapping_range& other, Comparator&& cmp) const {
std::vector<wrapping_range> result;
std::list<wrapping_range> left;
std::list<wrapping_range> right;
if (is_wrap_around(cmp)) {
auto u = unwrap();
left.emplace_back(std::move(u.first));
left.emplace_back(std::move(u.second));
} else {
left.push_back(*this);
}
if (other.is_wrap_around(cmp)) {
auto u = other.unwrap();
right.emplace_back(std::move(u.first));
right.emplace_back(std::move(u.second));
} else {
right.push_back(other);
}
// left and right contain now non-overlapping, ordered ranges
while (!left.empty() && !right.empty()) {
auto& r1 = left.front();
auto& r2 = right.front();
if (less_than(r2.end_bound(), r1.start_bound(), cmp)) {
right.pop_front();
} else if (less_than(r1.end_bound(), r2.start_bound(), cmp)) {
result.emplace_back(std::move(r1));
left.pop_front();
} else { // Overlap
auto tmp = std::move(r1);
left.pop_front();
if (!greater_than_or_equal(r2.end_bound(), tmp.end_bound(), cmp)) {
left.push_front({bound(r2.end()->value(), !r2.end()->is_inclusive()), tmp.end()});
}
if (!less_than_or_equal(r2.start_bound(), tmp.start_bound(), cmp)) {
left.push_front({tmp.start(), bound(r2.start()->value(), !r2.start()->is_inclusive())});
}
}
}
boost::copy(left, std::back_inserter(result));
// TODO: Merge adjacent ranges (optimization)
return result;
}
// split range in two around a split_point. split_point has to be inside the range
// split_point will belong to first range
// Comparator must define a total ordering on T.
template<typename Comparator>
std::pair<wrapping_range<T>, wrapping_range<T>> split(const T& split_point, Comparator&& cmp) const {
assert(contains(split_point, std::forward<Comparator>(cmp)));
wrapping_range left(start(), bound(split_point));
wrapping_range right(bound(split_point, false), end());
return std::make_pair(std::move(left), std::move(right));
}
// Create a sub-range including values greater than the split_point. Returns stdx::nullopt if
// split_point is after the end (but not included in the range, in case of wraparound ranges)
// Comparator must define a total ordering on T.
template<typename Comparator>
stdx::optional<wrapping_range<T>> split_after(const T& split_point, Comparator&& cmp) const {
if (contains(split_point, std::forward<Comparator>(cmp))
&& (!end() || cmp(split_point, end()->value()) != 0)) {
return wrapping_range(bound(split_point, false), end());
} else if (end() && cmp(split_point, end()->value()) >= 0) {
// whether to return stdx::nullopt or the full range is not
// well-defined for wraparound ranges; we return nullopt
// if split_point is after the end.
return stdx::nullopt;
} else {
return *this;
}
}
template<typename Bound, typename Transformer, typename U = transformed_type<Transformer>>
static stdx::optional<typename wrapping_range<U>::bound> transform_bound(Bound&& b, Transformer&& transformer) {
if (b) {
return { { transformer(std::forward<Bound>(b).value().value()), b->is_inclusive() } };
};
return {};
}
// Transforms this range into a new range of a different value type
// Supplied transformer should transform value of type T (the old type) into value of type U (the new type).
template<typename Transformer, typename U = transformed_type<Transformer>>
wrapping_range<U> transform(Transformer&& transformer) && {
return wrapping_range<U>(transform_bound(std::move(_start), transformer), transform_bound(std::move(_end), transformer), _singular);
}
template<typename Transformer, typename U = transformed_type<Transformer>>
wrapping_range<U> transform(Transformer&& transformer) const & {
return wrapping_range<U>(transform_bound(_start, transformer), transform_bound(_end, transformer), _singular);
}
template<typename Comparator>
bool equal(const wrapping_range& other, Comparator&& cmp) const {
return bool(_start) == bool(other._start)
&& bool(_end) == bool(other._end)
&& (!_start || _start->equal(*other._start, cmp))
&& (!_end || _end->equal(*other._end, cmp))
&& _singular == other._singular;
}
bool operator==(const wrapping_range& other) const {
return (_start == other._start) && (_end == other._end) && (_singular == other._singular);
}
template<typename U>
friend std::ostream& operator<<(std::ostream& out, const wrapping_range<U>& r);
private:
friend class nonwrapping_range<T>;
};
template<typename U>
std::ostream& operator<<(std::ostream& out, const wrapping_range<U>& r) {
if (r.is_singular()) {
return out << "{" << r.start()->value() << "}";
}
if (!r.start()) {
out << "(-inf, ";
} else {
if (r.start()->is_inclusive()) {
out << "[";
} else {
out << "(";
}
out << r.start()->value() << ", ";
}
if (!r.end()) {
out << "+inf)";
} else {
out << r.end()->value();
if (r.end()->is_inclusive()) {
out << "]";
} else {
out << ")";
}
}
return out;
}
// A range which can have inclusive, exclusive or open-ended bounds on each end.
// The end bound can never be smaller than the start bound.
template<typename T>
class nonwrapping_range {
template <typename U>
using optional = std::experimental::optional<U>;
public:
using bound = range_bound<T>;
template <typename Transformer>
using transformed_type = typename wrapping_range<T>::template transformed_type<Transformer>;
private:
wrapping_range<T> _range;
public:
nonwrapping_range(T value)
: _range(std::move(value))
{ }
nonwrapping_range() : nonwrapping_range({}, {}) { }
// Can only be called if start <= end. IDL ctor.
nonwrapping_range(optional<bound> start, optional<bound> end, bool singular = false)
: _range(std::move(start), std::move(end), singular)
{ }
// Can only be called if !r.is_wrap_around().
explicit nonwrapping_range(wrapping_range<T>&& r)
: _range(std::move(r))
{ }
// Can only be called if !r.is_wrap_around().
explicit nonwrapping_range(const wrapping_range<T>& r)
: _range(r)
{ }
operator wrapping_range<T>() const & {
return _range;
}
operator wrapping_range<T>() && {
return std::move(_range);
}
// the point is before the range.
// Comparator must define a total ordering on T.
template<typename Comparator>
bool before(const T& point, Comparator&& cmp) const {
return _range.before(point, std::forward<Comparator>(cmp));
}
// the point is after the range.
// Comparator must define a total ordering on T.
template<typename Comparator>
bool after(const T& point, Comparator&& cmp) const {
return _range.after(point, std::forward<Comparator>(cmp));
}
// check if two ranges overlap.
// Comparator must define a total ordering on T.
template<typename Comparator>
bool overlaps(const nonwrapping_range& other, Comparator&& cmp) const {
// if both this and other have an open start, the two ranges will overlap.
if (!start() && !other.start()) {
return true;
}
return wrapping_range<T>::greater_than_or_equal(_range.end_bound(), other._range.start_bound(), cmp)
&& wrapping_range<T>::greater_than_or_equal(other._range.end_bound(), _range.start_bound(), cmp);
}
static nonwrapping_range make(bound start, bound end) {
return nonwrapping_range({std::move(start)}, {std::move(end)});
}
static nonwrapping_range make_open_ended_both_sides() {
return {{}, {}};
}
static nonwrapping_range make_singular(T value) {
return {std::move(value)};
}
static nonwrapping_range make_starting_with(bound b) {
return {{std::move(b)}, {}};
}
static nonwrapping_range make_ending_with(bound b) {
return {{}, {std::move(b)}};
}
bool is_singular() const {
return _range.is_singular();
}
bool is_full() const {
return _range.is_full();
}
const optional<bound>& start() const {
return _range.start();
}
const optional<bound>& end() const {
return _range.end();
}
// the point is inside the range
// Comparator must define a total ordering on T.
template<typename Comparator>
bool contains(const T& point, Comparator&& cmp) const {
return !before(point, cmp) && !after(point, cmp);
}
// Returns true iff all values contained by other are also contained by this.
// Comparator must define a total ordering on T.
template<typename Comparator>
bool contains(const nonwrapping_range& other, Comparator&& cmp) const {
return wrapping_range<T>::less_than_or_equal(_range.start_bound(), other._range.start_bound(), cmp)
&& wrapping_range<T>::greater_than_or_equal(_range.end_bound(), other._range.end_bound(), cmp);
}
// Returns ranges which cover all values covered by this range but not covered by the other range.
// Ranges are not overlapping and ordered.
// Comparator must define a total ordering on T.
template<typename Comparator>
std::vector<nonwrapping_range> subtract(const nonwrapping_range& other, Comparator&& cmp) const {
auto subtracted = _range.subtract(other._range, std::forward<Comparator>(cmp));
return boost::copy_range<std::vector<nonwrapping_range>>(subtracted | boost::adaptors::transformed([](auto&& r) {
return nonwrapping_range(std::move(r));
}));
}
// split range in two around a split_point. split_point has to be inside the range
// split_point will belong to first range
// Comparator must define a total ordering on T.
template<typename Comparator>
std::pair<nonwrapping_range<T>, nonwrapping_range<T>> split(const T& split_point, Comparator&& cmp) const {
assert(contains(split_point, std::forward<Comparator>(cmp)));
nonwrapping_range left(start(), bound(split_point));
nonwrapping_range right(bound(split_point, false), end());
return std::make_pair(std::move(left), std::move(right));
}
// Create a sub-range including values greater than the split_point. If split_point is after
// the end, returns stdx::nullopt.
template<typename Comparator>
stdx::optional<nonwrapping_range> split_after(const T& split_point, Comparator&& cmp) const {
if (end() && cmp(split_point, end()->value()) >= 0) {
return stdx::nullopt;
} else if (start() && cmp(split_point, start()->value()) < 0) {
return *this;
} else {
return nonwrapping_range(range_bound<T>(split_point, false), end());
}
}
// Creates a new sub-range which is the intersection of this range and a range starting with "start".
// If there is no overlap, returns stdx::nullopt.
template<typename Comparator>
stdx::optional<nonwrapping_range> trim_front(stdx::optional<bound>&& start, Comparator&& cmp) const {
return intersection(nonwrapping_range(std::move(start), {}), cmp);
}
// Transforms this range into a new range of a different value type
// Supplied transformer should transform value of type T (the old type) into value of type U (the new type).
template<typename Transformer, typename U = transformed_type<Transformer>>
nonwrapping_range<U> transform(Transformer&& transformer) && {
return nonwrapping_range<U>(std::move(_range).transform(std::forward<Transformer>(transformer)));
}
template<typename Transformer, typename U = transformed_type<Transformer>>
nonwrapping_range<U> transform(Transformer&& transformer) const & {
return nonwrapping_range<U>(_range.transform(std::forward<Transformer>(transformer)));
}
template<typename Comparator>
bool equal(const nonwrapping_range& other, Comparator&& cmp) const {
return _range.equal(other._range, std::forward<Comparator>(cmp));
}
bool operator==(const nonwrapping_range& other) const {
return _range == other._range;
}
// Takes a vector of possibly overlapping ranges and returns a vector containing
// a set of non-overlapping ranges covering the same values.
template<typename Comparator>
static std::vector<nonwrapping_range> deoverlap(std::vector<nonwrapping_range> ranges, Comparator&& cmp) {
auto size = ranges.size();
if (size <= 1) {
return ranges;
}
std::sort(ranges.begin(), ranges.end(), [&](auto&& r1, auto&& r2) {
return wrapping_range<T>::less_than(r1._range.start_bound(), r2._range.start_bound(), cmp);
});
std::vector<nonwrapping_range> deoverlapped_ranges;
deoverlapped_ranges.reserve(size);
auto&& current = ranges[0];
for (auto&& r : ranges | boost::adaptors::sliced(1, ranges.size())) {
bool includes_end = wrapping_range<T>::greater_than_or_equal(r._range.end_bound(), current._range.start_bound(), cmp)
&& wrapping_range<T>::greater_than_or_equal(current._range.end_bound(), r._range.end_bound(), cmp);
if (includes_end) {
continue; // last.start <= r.start <= r.end <= last.end
}
bool includes_start = wrapping_range<T>::greater_than_or_equal(current._range.end_bound(), r._range.start_bound(), cmp);
if (includes_start) {
current = nonwrapping_range(std::move(current.start()), std::move(r.end()));
} else {
deoverlapped_ranges.emplace_back(std::move(current));
current = std::move(r);
}
}
deoverlapped_ranges.emplace_back(std::move(current));
return deoverlapped_ranges;
}
private:
// These private functions optimize the case where a sequence supports the
// lower and upper bound operations more efficiently, as is the case with
// some boost containers.
struct std_ {};
struct built_in_ : std_ {};
template<typename Range, typename LessComparator,
typename = decltype(std::declval<Range>().lower_bound(std::declval<T>(), std::declval<LessComparator>()))>
typename std::remove_reference<Range>::type::const_iterator do_lower_bound(const T& value, Range&& r, LessComparator&& cmp, built_in_) const {
return r.lower_bound(value, std::forward<LessComparator>(cmp));
}
template<typename Range, typename LessComparator,
typename = decltype(std::declval<Range>().upper_bound(std::declval<T>(), std::declval<LessComparator>()))>
typename std::remove_reference<Range>::type::const_iterator do_upper_bound(const T& value, Range&& r, LessComparator&& cmp, built_in_) const {
return r.upper_bound(value, std::forward<LessComparator>(cmp));
}
template<typename Range, typename LessComparator>
typename std::remove_reference<Range>::type::const_iterator do_lower_bound(const T& value, Range&& r, LessComparator&& cmp, std_) const {
return std::lower_bound(r.begin(), r.end(), value, std::forward<LessComparator>(cmp));
}
template<typename Range, typename LessComparator>
typename std::remove_reference<Range>::type::const_iterator do_upper_bound(const T& value, Range&& r, LessComparator&& cmp, std_) const {
return std::upper_bound(r.begin(), r.end(), value, std::forward<LessComparator>(cmp));
}
public:
// Return the lower bound of the specified sequence according to these bounds.
template<typename Range, typename LessComparator>
typename std::remove_reference<Range>::type::const_iterator lower_bound(Range&& r, LessComparator&& cmp) const {
return start()
? (start()->is_inclusive()
? do_lower_bound(start()->value(), std::forward<Range>(r), std::forward<LessComparator>(cmp), built_in_())
: do_upper_bound(start()->value(), std::forward<Range>(r), std::forward<LessComparator>(cmp), built_in_()))
: std::cbegin(r);
}
// Return the upper bound of the specified sequence according to these bounds.
template<typename Range, typename LessComparator>
typename std::remove_reference<Range>::type::const_iterator upper_bound(Range&& r, LessComparator&& cmp) const {
return end()
? (end()->is_inclusive()
? do_upper_bound(end()->value(), std::forward<Range>(r), std::forward<LessComparator>(cmp), built_in_())
: do_lower_bound(end()->value(), std::forward<Range>(r), std::forward<LessComparator>(cmp), built_in_()))
: (is_singular()
? do_upper_bound(start()->value(), std::forward<Range>(r), std::forward<LessComparator>(cmp), built_in_())
: std::cend(r));
}
// Returns a subset of the range that is within these bounds.
template<typename Range, typename LessComparator>
boost::iterator_range<typename std::remove_reference<Range>::type::const_iterator>
slice(Range&& range, LessComparator&& cmp) const {
return boost::make_iterator_range(lower_bound(range, cmp), upper_bound(range, cmp));
}
// Returns the intersection between this range and other.
template<typename Comparator>
stdx::optional<nonwrapping_range> intersection(const nonwrapping_range& other, Comparator&& cmp) const {
auto p = std::minmax(_range, other._range, [&cmp] (auto&& a, auto&& b) {
return wrapping_range<T>::less_than(a.start_bound(), b.start_bound(), cmp);
});
if (wrapping_range<T>::greater_than_or_equal(p.first.end_bound(), p.second.start_bound(), cmp)) {
auto end = std::min(p.first.end_bound(), p.second.end_bound(), [&cmp] (auto&& a, auto&& b) {
return !wrapping_range<T>::greater_than_or_equal(a, b, cmp);
});
return nonwrapping_range(p.second.start(), end.b);
}
return {};
}
template<typename U>
friend std::ostream& operator<<(std::ostream& out, const nonwrapping_range<U>& r);
};
template<typename U>
std::ostream& operator<<(std::ostream& out, const nonwrapping_range<U>& r) {
return out << r._range;
}
template<typename T>
using range = wrapping_range<T>;
GCC6_CONCEPT(
template<template<typename> typename T, typename U>
concept bool Range = std::is_same<T<U>, wrapping_range<U>>::value || std::is_same<T<U>, nonwrapping_range<U>>::value;
)
// Allow using range<T> in a hash table. The hash function 31 * left +
// right is the same one used by Cassandra's AbstractBounds.hashCode().
namespace std {
template<typename T>
struct hash<wrapping_range<T>> {
using argument_type = wrapping_range<T>;
using result_type = decltype(std::hash<T>()(std::declval<T>()));
result_type operator()(argument_type const& s) const {
auto hash = std::hash<T>();
auto left = s.start() ? hash(s.start()->value()) : 0;
auto right = s.end() ? hash(s.end()->value()) : 0;
return 31 * left + right;
}
};
template<typename T>
struct hash<nonwrapping_range<T>> {
using argument_type = nonwrapping_range<T>;
using result_type = decltype(std::hash<T>()(std::declval<T>()));
result_type operator()(argument_type const& s) const {
return hash<wrapping_range<T>>()(s);
}
};
}