-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathreaders.py
73 lines (53 loc) · 1.9 KB
/
readers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import abc
from typing import List
import numpy as np
class Label3D:
def __init__(self, classification: str, centroid: np.ndarray, dimension: np.ndarray, yaw: float):
self.classification = classification
self.centroid = centroid
self.dimension = dimension
self.yaw = yaw
class DataReader:
@staticmethod
@abc.abstractmethod
def read_lidar(file_path: str) -> np.ndarray:
raise NotImplementedError
@staticmethod
@abc.abstractmethod
def read_label(file_path: str) -> List[Label3D]:
raise NotImplementedError
@staticmethod
@abc.abstractmethod
def read_calibration(file_path: str) -> np.ndarray:
raise NotImplementedError
class KittiDataReader(DataReader):
def __init__(self):
super(KittiDataReader, self).__init__()
@staticmethod
def read_lidar(file_path: str):
return np.fromfile(file_path, dtype=np.float32).reshape((-1, 4))
@staticmethod
def read_label(file_path: str):
with open(file_path, "r") as f:
lines = f.readlines()
elements = []
for line in lines:
values = line.split()
element = Label3D(
str(values[0]),
np.array(values[11:14], dtype=np.float32),
np.array(values[8:11], dtype=np.float32),
float(values[14])
)
if element.classification == "DontCare":
continue
else:
elements.append(element)
return elements
@staticmethod
def read_calibration(file_path: str):
with open(file_path, "r") as f:
lines = f.readlines()
Tr_velo_to_cam = np.array(lines[5].split(": ")[1].split(" "), dtype=np.float32).reshape((3, 4))
R, t = Tr_velo_to_cam[:, :3], Tr_velo_to_cam[:, 3]
return R, t