-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransform_fmi_composite_to_lagrangian.py
172 lines (141 loc) · 5.19 KB
/
transform_fmi_composite_to_lagrangian.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
"""Apply transformation to Lagrangian coordinates."""
import argparse
import numpy as np
import dask
from pathlib import Path
import logging
from scipy.ndimage import uniform_filter
from datasets import FMIComposite
import utils
def worker(idx, dataset, lconf):
past_data, future_data, _ = dataset[idx]
dates = dataset.get_window(idx)
R = np.vstack([past_data.detach().numpy(), future_data.detach().numpy()]).squeeze()
# Remove nan values
R[~np.isfinite(R)] = 0
# Transform dBZ to mm/h
a_r = lconf.rainrate_conversion.a
b_r = lconf.rainrate_conversion.b
# First to linear
R = 10 ** (R * 0.1)
# Then to mm/h
R = (R / a_r) ** (1 / b_r) # fixed
# Remove non-precipitation values
R[R < lconf["precip_threshold_mmh"]] = 0
# Common time index (in 1-based indices)
# For Lagrangian transform
t0_lagr = past_data.shape[0]
# After Lagrangian transform, when first fields are discarded
if lconf["oflow_params"]["update_advfield"]:
t0_ = t0_lagr - lconf["oflow_params"]["oflow_history_length"] + 1
dates_ = dates[lconf["oflow_params"]["oflow_history_length"] - 1 :]
else:
t0_ = t0_lagr
dates_ = dates
R_lagrangian, mask_adv, advfields = utils.transform_to_lagrangian(
R,
t0_lagr,
dates,
advfield_length=lconf["oflow_params"]["oflow_history_length"],
update_advfield=lconf["oflow_params"]["update_advfield"],
optflow_method=lconf["oflow_params"]["oflow_method"],
oflow_kwargs=lconf["oflow_params"][lconf["oflow_params"]["oflow_method"]],
extrap_kwargs=lconf["oflow_params"]["extrap_kwargs"],
)
if (lconf["output"]["display_freq"] > 0) and (
idx % lconf["output"]["display_freq"] == 0
):
R_euler = utils.transform_to_eulerian(R_lagrangian, t0_, dates_, advfields)
utils.plot_lagrangian_fields(
dates_,
t0_,
R,
R_lagrangian,
R_euler,
advfields,
mask_adv,
outpath=lconf["output"]["fig_path"],
min_dbz=lconf["precip_threshold_dbz"],
)
R_lagrangian[:, ~mask_adv] = np.nan
# Fill possible negative values with moving mean
if np.any(R_lagrangian < 0):
for i in range(R_lagrangian.shape[0]):
mean_ = uniform_filter(R_lagrangian[i], size=3, mode="constant")
R_lagrangian[i][np.where(R_lagrangian[i] < 0)] = mean_[
np.where(R_lagrangian[i] < 0)
]
# If any negative remain, set to 0
R_lagrangian[R_lagrangian < 0] = 0
# Transform mm/h back to dBZ for storing
R_lagrangian = a_r * R_lagrangian ** (b_r) # to z
R_lagrangian = 10 * np.log10(R_lagrangian) # to dBZ
utils.save_lagrangian_fields_h5_with_advfields(
R_lagrangian, dates_, t0_, advfields, lconf["output"]
)
del R, R_lagrangian, past_data, future_data, advfields
def main(dataset, lconf):
# Iterate over dataset and calculate Lagrangian transform
res = []
n_items = len(dataset)
for idx in range(n_items):
# Don't run existing files
dates = dataset.get_window(idx)
if lconf["oflow_params"]["update_advfield"]:
# Consider the extra fields in common time
common_time = dates[
dataset.num_frames_input
+ lconf["oflow_params"]["oflow_history_length"]
- 2
]
else:
common_time = dates[dataset.num_frames_input - 1]
fn = Path(
lconf["output"]["path"].format(
year=common_time.year,
month=common_time.month,
day=common_time.day,
)
) / Path(
lconf["output"]["filename"].format(
commontime=common_time,
)
)
if fn.exists():
continue
res.append(
dask.delayed(worker)(
idx,
dataset,
lconf,
)
)
logging.info(f"Running {len(res)} datasets!")
scheduler = "processes" if args.nworkers > 1 else "single-threaded"
res = dask.compute(*res, num_workers=args.nworkers, scheduler=scheduler)
if __name__ == "__main__":
argparser = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter
)
argparser.add_argument("config", type=str, help="Configuration folder")
argparser.add_argument("split", type=str, help="split")
argparser.add_argument(
"--nworkers",
type=int,
default=1,
help="Number of workers",
)
args = argparser.parse_args()
confpath = Path("config") / args.config
dsconf = utils.load_config(confpath / "lagrangian_transform_datasets.yaml")[
"FMIComposite"
]
lconf = utils.load_config(confpath / "lagrangian_transform_params.yaml")
logconf = utils.load_config(confpath / "output.yaml")
if lconf["oflow_params"]["update_advfield"]:
dsconf["input_block_length"] += (
lconf["oflow_params"]["oflow_history_length"] - 1
)
dataset = FMIComposite(split=args.split, **dsconf)
utils.setup_logging(logconf.logging)
main(dataset, lconf)