-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathldi_render.py
172 lines (145 loc) · 5.9 KB
/
ldi_render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import math
import time
import random
import argparse
import torch
import numpy as np
import scipy.io as sio
import imageio
from PIL import Image
from lib.module import Unprojector, ViewTransformer, Renderer
from lib.camera import *
from lib.util import *
def main(args):
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed(0)
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
# load LDI
try:
ldi = sio.loadmat(args.ldi_path)
fov, h, w = float(ldi['fov']), int(ldi['h']), int(ldi['w'])
rgb = ldi['rgb'].astype(np.float32) / 255
uv = ldi['uv'].astype(np.float32) + 0.5
z = ldi['z'].astype(np.float32)
n_pts = len(rgb)
print('LDI loaded')
except:
raise IOError(
'[ERROR] LDI loading failed: {:s}'.format(args.ldi_path)
)
rgb = torch.from_numpy(rgb).transpose(1, 0) # (3, p)
uv = torch.from_numpy(uv) # (p, 2)
z = torch.from_numpy(z) # (p,)
# camera intrinsics
fov = math.radians(fov)
fx = fy = 0.5 * h * math.tan((math.pi - fov) / 2)
cx, cy = w / 2, h / 2
K = torch.Tensor([fov, fx, fy, cx, cy]) # (5,)
# camera poses
out_fov = math.radians(args.fov) if args.fov is not None else fov
fovs = torch.Tensor([out_fov] * args.n_frames)
if args.motion == 'zoom':
Ms = make_zoom(args.n_frames, args.z_lim)
elif args.motion == 'dolly_zoom':
ctr_idx = torch.logical_and(
torch.logical_and(uv[:, 0] / w > 0.49, uv[:, 0] / w < 0.51),
torch.logical_and(uv[:, 1] / h > 0.49, uv[:, 1] / h < 0.51)
)
ctr_depth = z[ctr_idx].min()
Ms, fovs = make_dolly_zoom(args.n_frames, args.z_lim, out_fov, ctr_depth)
elif args.motion == 'ken_burns':
Ms = make_ken_burns(args.n_frames, args.x_lim, args.y_lim, args.z_lim)
elif args.motion == 'swing':
Ms = make_swing(args.n_frames, args.x_lim, args.z_lim)
elif args.motion == 'circle':
Ms = make_circle(args.n_frames, args.x_lim, args.y_lim, args.z_lim)
elif args.motion == 'static':
Ms = torch.zeros(1, 3, 4)
Ms[..., :3] += torch.eye(3)
sio.savemat(
os.path.join(save_path, 'views.mat'),
{'Ms': Ms.numpy(), 'fovs': fovs.numpy()}
)
uv = uv[None].cuda() # (1, p, 2)
z = z[None].cuda() # (1, p)
rgb = rgb[None].cuda() # (1, 3, p)
K = K[None].cuda() # (1, 5)
Ms = Ms[None].cuda() # (1, v, 3, 4)
fovs = fovs[None].cuda() # (1, v)
# set up rendering utilities
unprojector = Unprojector()
view_transformer = ViewTransformer()
renderer = Renderer().cuda()
# re-project and render
t0 = time.time()
xyz = unprojector(uv, z, K)
rgb_list = []
for i in range(args.n_frames):
new_xyz = view_transformer(xyz, Ms[:, i])
out_dict = renderer(
xyz=new_xyz,
data=rgb,
fov=fovs[:, i],
h=h // 2 if args.anti_aliasing else h,
w=w // 2 if args.anti_aliasing else w,
anti_aliasing=args.anti_aliasing,
denoise=True
)
rgb_list.append(out_dict['data'])
t1 = time.time()
print('render time: {:s}'.format(time_str(t1 - t0)))
rgbs = torch.stack(rgb_list, 1)[0] # (v, 3, h, w)
rgbs = rgbs.permute(0, 2, 3, 1) # (v, h, w, 3)
rgbs = np.clip(rgbs.cpu().numpy(), 0, 1)
rgbs = (rgbs * 255).astype(np.uint8)
# save
if len(rgbs) > 1:
imageio.mimwrite(
os.path.join(save_path, 'video_raw.mp4'), rgbs, fps=30, quality=8
)
# for i in range(len(rgbs)):
# rgb = Image.fromarray(rgbs[i])
# rgb.save(os.path.join(save_path, 'raw_{:03d}.png'.format(i + 1)))
else:
rgb = Image.fromarray(rgbs[0])
rgb.save(os.path.join(save_path, 'out.png'))
###########################################################################
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-n', '--name', type=str, default='ldi_render',
help='job name')
parser.add_argument('-g', '--gpu', type=str, default='0',
help='GPU device ID')
parser.add_argument('-ldi', '--ldi_path', type=str,
help='LDI path')
parser.add_argument('-fov', '--fov', type=float, default=None,
help='output (vertical) field of view')
parser.add_argument('-cam', '--motion', type=str, default='zoom',
choices=('zoom', 'dolly_zoom', 'ken_burns',
'swing', 'circle', 'static'),
help='camera motion')
parser.add_argument('-x', '--x_lim', type=float, nargs='+',
default=[-0.02, 0.02], help='left / right bounds')
parser.add_argument('-y', '--y_lim', type=float, nargs='+',
default=[-0.02, 0.02], help='top / bottom bounds')
parser.add_argument('-z', '--z_lim', type=float, nargs='+',
default=[0, 0.05], help='near / far bounds')
parser.add_argument('-f', '--n_frames', type=int,
default=90, help='number of frames')
parser.add_argument('-aa', '--anti_aliasing', action='store_true',
help='if True, apply anti-aliasing')
args = parser.parse_args()
check_file(args.ldi_path)
# set up save folder
root = 'test/out/ldi_render'
os.makedirs(root, exist_ok=True)
save_name = args.name + '_' + args.motion
save_path = os.path.join(root, save_name)
ensure_path(save_path)
set_gpu(args.gpu)
main(args)