-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtest_ldi.py
229 lines (196 loc) · 8.2 KB
/
test_ldi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import os
import math
import time
import random
import argparse
import torch
import numpy as np
import scipy.io as sio
import imageio
from PIL import Image
from lib.model import Model3D
from lib.camera import *
from lib.util import *
def main(args):
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed(0)
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
# load model
try:
ckpt = torch.load(args.model_path)
config = ckpt['config']
net = Model3D(config['encoder'], config['decoder'])
if args.style_path is not None:
net.convert_for_stylization(config['stylizer'])
net.cuda()
net_state = ckpt['netG'] if 'netG' in ckpt.keys() else ckpt['net']
net.load_state_dict(net_state, strict=False)
net.eval()
print('model loaded')
except:
raise ValueError(
'[ERROR] model loading failed: {:s}'.format(args.model_path)
)
# load LDI
try:
ldi = sio.loadmat(args.ldi_path)
fov, h, w = float(ldi['fov']), int(ldi['h']), int(ldi['w'])
rgb = ldi['rgb'].astype(np.float32) / 255
uv = ldi['uv'].astype(np.float32) + 0.5
z = ldi['z'].astype(np.float32)
n_pts = len(rgb)
print('LDI loaded')
except:
raise IOError(
'[ERROR] LDI loading failed: {:s}'.format(args.ldi_path)
)
rgb = torch.from_numpy(rgb) # (p, 3)
uv = torch.from_numpy(uv) # (p, 2)
z = torch.from_numpy(z) # (p)
# shuffle points
## NOTE: The point cloud encoder gathers a fixed number of points
## from within a neighborhood in a first-come-first-serve manner.
## Shuffling erases any implicit ordering of points in the input LDI.
pt_idx = list(range(n_pts))
random.shuffle(pt_idx)
rgb, uv, z = rgb[pt_idx], uv[pt_idx], z[pt_idx]
rgb = rgb.t() # (3, p)
# camera intrinsics
fov = math.radians(fov)
fx = fy = 0.5 * h * math.tan((math.pi - fov) / 2)
cx, cy = w / 2, h / 2
K = torch.Tensor([fov, fx, fy, cx, cy]) # (5,)
# camera poses
out_fov = math.radians(args.fov) if args.fov is not None else fov
fovs = torch.Tensor([out_fov] * args.n_frames)
if args.motion == 'zoom':
Ms = make_zoom(args.n_frames, args.z_lim)
elif args.motion == 'dolly_zoom':
ctr_idx = torch.logical_and(
torch.logical_and(uv[:, 0] / w > 0.49, uv[:, 0] / w < 0.51),
torch.logical_and(uv[:, 1] / h > 0.49, uv[:, 1] / h < 0.51)
)
ctr_depth = z[ctr_idx].min()
Ms, fovs = make_dolly_zoom(args.n_frames, args.z_lim, out_fov, ctr_depth)
elif args.motion == 'ken_burns':
Ms = make_ken_burns(args.n_frames, args.x_lim, args.y_lim, args.z_lim)
elif args.motion == 'swing':
Ms = make_swing(args.n_frames, args.x_lim, args.z_lim)
elif args.motion == 'circle':
Ms = make_circle(args.n_frames, args.x_lim, args.y_lim, args.z_lim)
elif args.motion == 'static':
Ms = torch.zeros(1, 3, 4)
Ms[..., :3] += torch.eye(3)
sio.savemat(
os.path.join(save_path, 'views.mat'),
{'Ms': Ms.numpy(), 'fovs': fovs.numpy()}
)
input_dict = {
'src_rgb': rgb[None].cuda(), # (1, 3, p)
'src_uv': uv[None].cuda(), # (1, p, 2)
'src_z': z[None].cuda(), # (1, p, 1)
'K': K[None].cuda(), # (1, 5)
'Ms': Ms[None].cuda(), # (1, v, 3, 4)
'tgt_fovs': fovs[None].cuda() # (1, v)
}
# load style
if args.style_path is not None:
try:
style = Image.open(args.style_path).convert('RGB')
style = style.resize((args.style_size, args.style_size))
style = np.array(style, dtype=np.float32) / 255
print('style loaded')
except:
raise IOError(
'[ERROR] style loading failed: {:s}'.format(args.style_path)
)
style = torch.from_numpy(style).permute(2, 0, 1) # (3, h, w)
input_dict['style'] = style[None].cuda() # (1, 3, h, w)
# re-project and render
t0 = time.time()
with torch.no_grad():
output_dict = net(
input_dict=input_dict,
h=h // 2 if args.anti_aliasing else h,
w=w // 2 if args.anti_aliasing else w,
ndc=args.ndc,
pcd_size=args.pcd_size,
pcd_scale=args.pcd_scale,
anti_aliasing=args.anti_aliasing,
rgb_only=True
)
t1 = time.time()
print('render time: {:s}'.format(time_str(t1 - t0)))
pred_rgbs = output_dict['pred_rgb'][0] # (v, 3, h, w)
tgt_rgbs = output_dict['tgt_rgb'][0] # (v, 3, h, w)
pred_rgbs = pred_rgbs.permute(0, 2, 3, 1).cpu().numpy() # (v, h, w, 3)
tgt_rgbs = tgt_rgbs.permute(0, 2, 3, 1).cpu().numpy() # (v, h, w, 3)
pred_rgbs = np.clip(pred_rgbs, 0, 1)
tgt_rgbs = np.clip(tgt_rgbs, 0, 1)
pred_rgbs = (pred_rgbs * 255).astype(np.uint8)
tgt_rgbs = (tgt_rgbs * 255).astype(np.uint8)
# save
imageio.mimwrite(
os.path.join(save_path, 'video_pred.mp4'), pred_rgbs, fps=30, quality=8
)
for i in range(len(pred_rgbs)):
rgb = Image.fromarray(pred_rgbs[i])
rgb.save(os.path.join(save_path, 'pred_{:03d}.png'.format(i + 1)))
imageio.mimwrite(
os.path.join(save_path, 'video.mp4'), tgt_rgbs, fps=30, quality=8
)
###############################################################################
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-n', '--name', type=str, default='test_ldi',
help='job name')
parser.add_argument('-g', '--gpu', type=str, default='0',
help='GPU device ID')
parser.add_argument('-m', '--model_path', type=str,
help='model path')
parser.add_argument('-ldi', '--ldi_path', type=str,
help='LDI path')
parser.add_argument('-s', '--style_path', type=str, default=None,
help='style image path')
parser.add_argument('-fov', '--fov', type=float, default=None,
help='output (vertical) field of view')
parser.add_argument('-ndc', '--ndc', action='store_true',
help='if True, convert to NDC space')
parser.add_argument('-ps', '--pcd_size', type=int, default=None,
help='point cloud size')
parser.add_argument('-pc', '--pcd_scale', type=float, default=1,
help='point cloud scale')
parser.add_argument('-ss', '--style_size', type=int, default=256,
help='style image size')
parser.add_argument('-cam', '--motion', type=str, default='zoom',
choices=('zoom', 'dolly_zoom', 'ken_burns',
'swing', 'circle', 'static'),
help='camera motion')
parser.add_argument('-x', '--x_lim', type=float, nargs='+',
default=[-0.02, 0.02], help='left / right bounds')
parser.add_argument('-y', '--y_lim', type=float, nargs='+',
default=[-0.02, 0.02], help='top / bottom bounds')
parser.add_argument('-z', '--z_lim', type=float, nargs='+',
default=[0, 0.05], help='near / far bounds')
parser.add_argument('-f', '--n_frames', type=int,
default=90, help='number of frames')
parser.add_argument('-aa', '--anti_aliasing', action='store_true',
help='if True, apply anti-aliasing')
args = parser.parse_args()
check_file(args.ldi_path)
# set up save folder
root = 'test/out/ldi_model'
os.makedirs(root, exist_ok=True)
save_name = args.name
if args.style_path is not None:
style_name = os.path.basename(args.style_path).split('.')[0]
save_name += '_' + style_name
save_name += '_' + args.motion
save_path = os.path.join(root, save_name)
ensure_path(save_path)
set_gpu(args.gpu)
main(args)