From 6b9b1b316b9336be8077eeb3f802588c98270c09 Mon Sep 17 00:00:00 2001 From: thegithubgeek Date: Thu, 9 Nov 2017 21:07:42 -0800 Subject: [PATCH] Edit the backpropagation functions in cnn_model --- cnn_model.py | 3 --- testing.py | 4 ++-- 2 files changed, 2 insertions(+), 5 deletions(-) diff --git a/cnn_model.py b/cnn_model.py index e5b35f3..8287f5c 100644 --- a/cnn_model.py +++ b/cnn_model.py @@ -66,7 +66,6 @@ def back_relu(layer, deriv): return np.multiply(layer, deriv) -# TODO get the backpropagation for pooling to work def back_pool(layer, next_layer, deriv, size, stride=None): if stride is None: stride = size @@ -82,8 +81,6 @@ def back_pool(layer, next_layer, deriv, size, stride=None): def back_conv(layer, deriv, size, stride=[1, 1]): derivW = np.resize(deriv, (len(deriv), len(deriv[0]) * len(deriv[0][0]))) - print(deriv.shape) - print(derivW.shape) dw = np.zeros((len(layer), len(deriv), size[0] * size[1])) for i in range(len(layer)): for j in range(len(deriv)): diff --git a/testing.py b/testing.py index 878ee47..be52e1b 100644 --- a/testing.py +++ b/testing.py @@ -3,7 +3,7 @@ layer = np.random.random_integers(-10, 10, size=(1, 100, 100)) filter_size = [2, 3] -stride = [2, 3] +stride = [1, 1] # first dim is the current layer size, second dim is the next layer size, and third dim is the total filter size filters = [np.random.random_integers(-5, 5, size=(3, 2, 6)), np.random.random_integers(-5, 5, size=(2, 5, 6))] @@ -17,7 +17,7 @@ dm2 = back_relu(m2, 1) dc2 = back_pool(c2, m2, dm2, [2, 2]) -dr1 = back_conv(r1, dc2, filter_size, stride) +dr1 = back_conv(r1, dc2, filter_size, stride=stride) print(dr1) '''