-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
233 lines (213 loc) · 7.83 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
import mimetypes
import json
import shutil
from typing import List
from cog import BasePredictor, Input, Path
from comfyui import ComfyUI
from cog_model_helpers import optimise_images
OUTPUT_DIR = "/tmp/outputs"
INPUT_DIR = "/tmp/inputs"
COMFYUI_TEMP_OUTPUT_DIR = "ComfyUI/temp"
ALL_DIRECTORIES = [OUTPUT_DIR, INPUT_DIR, COMFYUI_TEMP_OUTPUT_DIR]
mimetypes.add_type("image/webp", ".webp")
# Save your example JSON to the same directory as predict.py
api_json_file = "workflow_api.json"
# Force HF offline
os.environ["HF_DATASETS_OFFLINE"] = "1"
os.environ["TRANSFORMERS_OFFLINE"] = "1"
os.environ["HF_HUB_DISABLE_TELEMETRY"] = "1"
class Predictor(BasePredictor):
def setup(self):
self.comfyUI = ComfyUI("127.0.0.1:8188")
self.comfyUI.start_server(OUTPUT_DIR, INPUT_DIR)
with open(api_json_file, "r") as file:
workflow = json.loads(file.read())
self.comfyUI.handle_weights(
workflow,
weights_to_download=[
"face_yolov8n.pt",
"appearance_feature_extractor.safetensors",
"motion_extractor.safetensors",
"spade_generator.safetensors",
"stitching_retargeting_module.safetensors",
"warping_module.safetensors",
],
)
def filename_with_extension(self, input_file, prefix):
extension = os.path.splitext(input_file.name)[1]
return f"{prefix}{extension}"
def handle_input_file(
self,
input_file: Path,
filename: str = "image.png",
):
shutil.copy(input_file, os.path.join(INPUT_DIR, filename))
def update_workflow(self, workflow, **kwargs):
# Existing image handling
workflow["15"]["inputs"]["image"] = kwargs["image_filename"]
# Add sample image handling
if "sample_image_filename" in kwargs:
# Add a new LoadImage node for sample image
workflow["16"] = {
"inputs": {"image": kwargs["sample_image_filename"], "upload": "image"},
"class_type": "LoadImage",
"_meta": {"title": "Load Sample Image"},
}
# Update Expression Editor to use sample image and parts
workflow["14"]["inputs"]["sample_image"] = ["16", 0]
workflow["14"]["inputs"]["sample_parts"] = kwargs["sample_parts"]
expression_editor = workflow["14"]["inputs"]
expression_editor["rotate_pitch"] = kwargs["rotate_pitch"]
expression_editor["rotate_yaw"] = kwargs["rotate_yaw"]
expression_editor["rotate_roll"] = kwargs["rotate_roll"]
expression_editor["blink"] = kwargs["blink"]
expression_editor["eyebrow"] = kwargs["eyebrow"]
expression_editor["wink"] = kwargs["wink"]
expression_editor["pupil_x"] = kwargs["pupil_x"]
expression_editor["pupil_y"] = kwargs["pupil_y"]
expression_editor["aaa"] = kwargs["aaa"]
expression_editor["eee"] = kwargs["eee"]
expression_editor["woo"] = kwargs["woo"]
expression_editor["smile"] = kwargs["smile"]
expression_editor["src_ratio"] = kwargs["src_ratio"]
expression_editor["sample_ratio"] = kwargs["sample_ratio"]
expression_editor["crop_factor"] = kwargs["crop_factor"]
def predict(
self,
image: Path = Input(
description="Image of a face",
default=None,
),
sample_image: Path = Input(
description="Reference image with desired expression",
default=None,
),
rotate_pitch: float = Input(
default=0,
ge=-20,
le=20,
description="Rotation pitch: Adjusts the up and down tilt of the face",
),
rotate_yaw: float = Input(
default=0,
ge=-20,
le=20,
description="Rotation yaw: Adjusts the left and right turn of the face",
),
rotate_roll: float = Input(
default=0,
ge=-20,
le=20,
description="Rotation roll: Adjusts the tilt of the face to the left or right",
),
blink: float = Input(
default=0,
ge=-20,
le=5,
description="Blink: Controls the degree of eye closure",
),
eyebrow: float = Input(
default=0,
ge=-10,
le=15,
description="Eyebrow: Adjusts the height and shape of the eyebrows",
),
wink: float = Input(
default=0,
ge=0,
le=25,
description="Wink: Controls the degree of one eye closing",
),
pupil_x: float = Input(
default=0,
ge=-15,
le=15,
description="Pupil X: Adjusts the horizontal position of the pupils",
),
pupil_y: float = Input(
default=0,
ge=-15,
le=15,
description="Pupil Y: Adjusts the vertical position of the pupils",
),
aaa: float = Input(
default=0,
ge=-30,
le=120,
description="AAA: Controls the mouth opening for 'aaa' sound",
),
eee: float = Input(
default=0,
ge=-20,
le=15,
description="EEE: Controls the mouth shape for 'eee' sound",
),
woo: float = Input(
default=0,
ge=-20,
le=15,
description="WOO: Controls the mouth shape for 'woo' sound",
),
smile: float = Input(
default=0,
ge=-0.3,
le=1.3,
description="Smile: Adjusts the degree of smiling",
),
src_ratio: float = Input(default=1, ge=0, le=1, description="Source ratio"),
sample_ratio: float = Input(
default=1, ge=-0.2, le=1.2, description="Sample ratio"
),
crop_factor: float = Input(
default=1.7, ge=1.5, le=2.5, description="Crop factor"
),
sample_parts: str = Input(
description="Select which parts to sample from the reference image",
choices=["OnlyExpression", "OnlyRotation", "OnlyMouth", "OnlyEyes", "All"],
default="OnlyExpression",
),
output_format: str = optimise_images.predict_output_format(),
output_quality: int = optimise_images.predict_output_quality(),
) -> List[Path]:
"""Run a single prediction on the model"""
self.comfyUI.cleanup(ALL_DIRECTORIES)
self.comfyUI.connect()
image_filename = None
if image:
image_filename = self.filename_with_extension(image, "image")
self.handle_input_file(image, image_filename)
if sample_image:
sample_image_filename = self.filename_with_extension(
sample_image, "sample_image"
)
self.handle_input_file(sample_image, sample_image_filename)
with open(api_json_file, "r") as file:
workflow = json.loads(file.read())
self.update_workflow(
workflow,
image_filename=image_filename,
sample_image_filename=sample_image_filename if sample_image else None,
rotate_pitch=rotate_pitch,
rotate_yaw=rotate_yaw,
rotate_roll=rotate_roll,
blink=blink,
eyebrow=eyebrow,
wink=wink,
pupil_x=pupil_x,
pupil_y=pupil_y,
aaa=aaa,
eee=eee,
woo=woo,
smile=smile,
src_ratio=src_ratio,
sample_ratio=sample_ratio,
crop_factor=crop_factor,
sample_parts=sample_parts,
)
self.comfyUI.run_workflow(workflow)
return optimise_images.optimise_image_files(
output_format,
output_quality,
self.comfyUI.get_files(COMFYUI_TEMP_OUTPUT_DIR),
)