-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_test.py
76 lines (59 loc) · 2.21 KB
/
train_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Copyright 2024 The Flax Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for flax.examples.mnist.mnist_lib."""
import pathlib
import tempfile
from absl.testing import absltest
import jax
from jax import numpy as jnp
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
from configs import default
import train
CNN_PARAMS = 825_034
class TrainTest(absltest.TestCase):
"""Test cases for train."""
def setUp(self):
super().setUp()
# Make sure tf does not allocate gpu memory.
tf.config.experimental.set_visible_devices([], "GPU")
def test_cnn(self):
"""Tests CNN module used as the trainable model."""
rng = jax.random.key(0)
inputs = jnp.ones((1, 28, 28, 3), jnp.float32)
output, variables = train.CNN().init_with_output(rng, inputs)
self.assertEqual((1, 10), output.shape)
self.assertEqual(
CNN_PARAMS,
sum(
np.prod(arr.shape)
for arr in jax.tree_util.tree_leaves(variables["params"])
),
)
def test_train_and_evaluate(self):
"""Tests training and evaluation code by running a single step."""
# Create a temporary directory where tensorboard metrics are written.
workdir = tempfile.mkdtemp()
# Go two directories up to the root of the flax directory.
flax_root_dir = pathlib.Path(__file__).parents[2]
data_dir = str(flax_root_dir) + "/.tfds/metadata" # pylint: disable=unused-variable
# Define training configuration.
config = default.get_config()
config.num_epochs = 1
config.batch_size = 8
with tfds.testing.mock_data(num_examples=8, data_dir=data_dir):
train.train_and_evaluate(config=config, workdir=workdir)
if __name__ == "__main__":
absltest.main()