-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
73 lines (54 loc) · 1.74 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Copyright 2024 The Flax Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""VAE model definitions."""
from flax import linen as nn
from jax import random
import jax.numpy as jnp
class Encoder(nn.Module):
"""VAE Encoder."""
latents: int
@nn.compact
def __call__(self, x):
x = nn.Dense(500, name='fc1')(x)
x = nn.relu(x)
mean_x = nn.Dense(self.latents, name='fc2_mean')(x)
logvar_x = nn.Dense(self.latents, name='fc2_logvar')(x)
return mean_x, logvar_x
class Decoder(nn.Module):
"""VAE Decoder."""
@nn.compact
def __call__(self, z):
z = nn.Dense(500, name='fc1')(z)
z = nn.relu(z)
z = nn.Dense(784, name='fc2')(z)
return z
class VAE(nn.Module):
"""Full VAE model."""
latents: int = 20
def setup(self):
self.encoder = Encoder(self.latents)
self.decoder = Decoder()
def __call__(self, x, z_rng):
mean, logvar = self.encoder(x)
z = reparameterize(z_rng, mean, logvar)
recon_x = self.decoder(z)
return recon_x, mean, logvar
def generate(self, z):
return nn.sigmoid(self.decoder(z))
def reparameterize(rng, mean, logvar):
std = jnp.exp(0.5 * logvar)
eps = random.normal(rng, logvar.shape)
return mean + eps * std
def model(latents):
return VAE(latents=latents)