-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtag-images.py
executable file
·169 lines (119 loc) · 4.64 KB
/
tag-images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#!/usr/bin/env python3
"""
Use JoyTag to tag all the images.
"""
import torch
from tqdm import tqdm
from PIL import Image
import PIL.Image
import torch.utils.data
from torch.utils.data import Dataset, DataLoader
import argparse
from JoyTag import VisionModel
import torchvision.transforms.functional as TVF
from pathlib import Path
import torch.amp
import psycopg
from torch import multiprocessing
PIL.Image.MAX_IMAGE_PIXELS = 933120000
JOYTAG_PATH = "joytag"
THRESHOLD = 0.4
parser = argparse.ArgumentParser()
parser.add_argument("--num-workers", type=int, default=32)
parser.add_argument("--batch-size", type=int, default=256)
@torch.no_grad()
def main():
args = parser.parse_args()
# Load JoyTag
model = VisionModel.load_model(JOYTAG_PATH, device='cuda')
model.eval()
model = torch.compile(model)
with open(Path(JOYTAG_PATH) / "top_tags.txt", "r") as f:
top_tags = [line.strip() for line in f.readlines() if line.strip()]
# Connect to the database
conn = psycopg.connect(dbname='postgres', user='postgres', host=str(Path.cwd() / "pg-socket"))
cur = conn.cursor()
# Fetch a list of all paths we need to work on
cur.execute("SELECT path FROM images WHERE embedding IS NOT NULL AND tag_string IS NULL")
paths = [path for path, in cur.fetchall()]
print(f"Found {len(paths)} paths to process")
dataloader = DataLoader(ImageDataset(paths, model.image_size), batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False, drop_last=False, prefetch_factor=4)
# Result writer
#result_queue = multiprocessing.Queue()
#result_process = multiprocessing.Process(target=result_worker, args=(result_queue,))
#result_process.start()
pbar = tqdm(total=len(paths), desc="Tagging images...", dynamic_ncols=True)
for images, paths in dataloader:
# Move to GPU
images = images.to('cuda', non_blocking=True)
# Put into range [0-1]
images = images / 255.0
# Normalize
images = TVF.normalize(images, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])
with torch.amp.autocast_mode.autocast('cuda', enabled=True):
preds = model({'image': images})
#preds = preds['tags'].sigmoid().cpu()
preds = preds['tags'].sigmoid() > THRESHOLD
assert preds.shape == (len(paths), len(top_tags))
preds = preds.cpu()
for path, pred in zip(paths, preds):
pred = pred.nonzero(as_tuple=True)[0]
tag_string = ",".join(top_tags[i] for i in pred)
cur.execute("UPDATE images SET tag_string = %s WHERE path = %s", (tag_string, path))
conn.commit()
#result_queue.put((paths, preds))
#assert preds.shape == (len(images), len(top_tags))
#for path, pred in zip(paths, preds):
# predicted_tags = [tag for tag,score in zip(top_tags, pred) if score > THRESHOLD]
# tag_string = ",".join(predicted_tags)
# cur.execute("UPDATE images SET tag_string = %s WHERE path = %s", (tag_string, path))
#conn.commit()
pbar.update(len(images))
#result_queue.put(None)
#result_process.join()
class ImageDataset(Dataset):
def __init__(self, paths: list[str], size: int):
self.paths = paths
self.size = size
def __len__(self):
return len(self.paths)
def __getitem__(self, idx):
path = self.paths[idx]
image_tensor = prepare_image(Image.open(path), self.size)
return image_tensor, path
def prepare_image(image: Image.Image, target_size: int) -> torch.Tensor:
# Pad image to square
image_shape = image.size
max_dim = max(image_shape)
pad_left = (max_dim - image_shape[0]) // 2
pad_top = (max_dim - image_shape[1]) // 2
padded_image = Image.new("RGB", (max_dim, max_dim), (255, 255, 255))
padded_image.paste(image, (pad_left, pad_top))
# Resize image
if max_dim != target_size:
padded_image = padded_image.resize((target_size, target_size), Image.BICUBIC)
# Convert to tensor
image_tensor = TVF.pil_to_tensor(padded_image)# / 255.0
# Normalize
#image_tensor = TVF.normalize(image_tensor, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])
return image_tensor
def result_worker(queue: multiprocessing.Queue):
# Connect to the database
conn = psycopg.connect(dbname='postgres', user='postgres', host=str(Path.cwd() / "pg-socket"))
cur = conn.cursor()
# Read top tags
with open(Path(JOYTAG_PATH) / "top_tags.txt", "r") as f:
top_tags = [line.strip() for line in f.readlines() if line.strip()]
# Process results
while True:
data = queue.get()
if data is None:
break
paths, preds = data
for path, pred in zip(paths, preds):
tag_string = ",".join(tag for tag,score in zip(top_tags, pred) if score)
cur.execute("UPDATE images SET tag_string = %s WHERE path = %s", (tag_string, path))
conn.commit()
conn.close()
if __name__ == "__main__":
main()