-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathinference.py
310 lines (263 loc) · 13.7 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
import json
import torch
import argparse
import numpy as np
from functools import partial
from omegaconf import OmegaConf
from PIL import Image, ImageDraw
from tkinter.messagebox import NO
from diffusers.utils import load_image
from diffusers import StableDiffusionXLImg2ImgPipeline
from ldm.util import instantiate_from_config
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.plms_instance import PLMSSamplerInst
from dataset.decode_item import sample_random_points_from_mask, sample_sparse_points_from_mask, decodeToBinaryMask, reorder_scribbles
from skimage.transform import resize
from utils.checkpoint import load_model_ckpt
from utils.input import convert_points, prepare_batch, prepare_instance_meta
from utils.model import create_clip_pretrain_model, set_alpha_scale, alpha_generator
device = "cuda"
def complete_mask(has_mask, max_objs):
mask = torch.ones(1,max_objs)
if has_mask == None:
return mask
if type(has_mask) == int or type(has_mask) == float:
return mask * has_mask
else:
for idx, value in enumerate(has_mask):
mask[0,idx] = value
return mask
@torch.no_grad()
def get_model_inputs(meta, model, text_encoder, diffusion, clip_model, clip_processor, config, grounding_tokenizer_input, starting_noise=None, instance_input=False):
if not instance_input:
# update config from args
config.update( vars(args) )
config = OmegaConf.create(config)
# prepare a batch of samples
batch = prepare_batch(meta, batch=config.num_images, max_objs=30, model=clip_model, processor=clip_processor, image_size=model.image_size, use_masked_att=True, device="cuda")
context = text_encoder.encode( [meta["prompt"]]*config.num_images )
# unconditional input
if not instance_input:
uc = text_encoder.encode( config.num_images*[""] )
if args.negative_prompt is not None:
uc = text_encoder.encode( config.num_images*[args.negative_prompt] )
else:
uc = None
# sampler
if not instance_input:
alpha_generator_func = partial(alpha_generator, type=meta.get("alpha_type"))
if config.mis > 0:
sampler = PLMSSamplerInst(diffusion, model, alpha_generator_func=alpha_generator_func, set_alpha_scale=set_alpha_scale, mis=config.mis)
else:
sampler = PLMSSampler(diffusion, model, alpha_generator_func=alpha_generator_func, set_alpha_scale=set_alpha_scale)
steps = 50
else:
sampler, steps = None, None
# grounding input
grounding_input = grounding_tokenizer_input.prepare(batch, return_att_masks=return_att_masks)
# model inputs
input = dict(x = starting_noise, timesteps = None, context = context, grounding_input = grounding_input)
return input, sampler, steps, uc, config
@torch.no_grad()
def run(meta, model, autoencoder, text_encoder, diffusion, clip_model, clip_processor, config, grounding_tokenizer_input, starting_noise=None, guidance_scale=None):
# prepare models inputs
input, sampler, steps, uc, config = get_model_inputs(meta, model, text_encoder, diffusion, clip_model, clip_processor, config, grounding_tokenizer_input, starting_noise, instance_input=False)
if guidance_scale is not None:
config.guidance_scale = guidance_scale
# prepare models inputs for each instance if MIS is used
if args.mis > 0:
input_all = [input]
for i in range(len(meta['phrases'])):
meta_instance = prepare_instance_meta(meta, i)
input_instance, _, _, _, _ = get_model_inputs(meta_instance, model, text_encoder, diffusion, clip_model, clip_processor, config, grounding_tokenizer_input, starting_noise, instance_input=True)
input_all.append(input_instance)
else:
input_all = input
# start sampling
shape = (config.num_images, model.in_channels, model.image_size, model.image_size)
with torch.autocast(device_type=device, dtype=torch.float16):
samples_fake = sampler.sample(S=steps, shape=shape, input=input_all, uc=uc, guidance_scale=config.guidance_scale)
samples_fake = autoencoder.decode(samples_fake)
# define output folder
output_folder = os.path.join( args.output, meta["save_folder_name"])
os.makedirs( output_folder, exist_ok=True)
start = len( os.listdir(output_folder) )
image_ids = list(range(start,start+config.num_images))
# print(image_ids)
# visualize the boudning boxes
image_boxes = draw_boxes( meta["locations"], meta["phrases"], meta["prompt"] + ";alpha=" + str(meta['alpha_type'][0]) )
img_name = os.path.join( output_folder, str(image_ids[0])+'_boxes.png' )
image_boxes.save( img_name )
print("saved image with boxes at {}".format(img_name))
# if use cascade model, we will use SDXL-Refiner to refine the generated images
if config.cascade_strength > 0:
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipe = pipe.to("cuda:0")
strength, steps = config.cascade_strength, 20 # default setting, need to be manually tuned.
# save the generated images
for image_id, sample in zip(image_ids, samples_fake):
img_name = str(int(image_id))+'.png'
sample = torch.clamp(sample, min=-1, max=1) * 0.5 + 0.5
sample = sample.cpu().numpy().transpose(1,2,0) * 255
sample = Image.fromarray(sample.astype(np.uint8))
if config.cascade_strength > 0:
prompt = meta["prompt"]
refined_image = pipe(prompt, image=sample, strength=strength, num_inference_steps=steps).images[0]
refined_image.save( os.path.join(output_folder, img_name.replace('.png', '_xl_s{}_n{}.png'.format(strength, steps))) )
sample.save( os.path.join(output_folder, img_name) )
def rescale_box(bbox, width, height):
x0 = bbox[0]/width
y0 = bbox[1]/height
x1 = (bbox[0]+bbox[2])/width
y1 = (bbox[1]+bbox[3])/height
return [x0, y0, x1, y1]
def get_point_from_box(bbox):
x0, y0, x1, y1 = bbox[0], bbox[1], bbox[2], bbox[3]
return [(x0 + x1)/2.0, (y0 + y1)/2.0]
def rescale_points(point, width, height):
return [point[0]/float(width), point[1]/float(height)]
def rescale_scribbles(scribbles, width, height):
return [[scribble[0]/float(width), scribble[1]/float(height)] for scribble in scribbles]
# draw boxes given a lits of boxes: [[top left cornor, top right cornor, width, height],]
# show descriptions per box if descriptions is not None
def draw_boxes(boxes, descriptions=None, caption=None):
width, height = 512, 512
image = Image.new("RGB", (width, height), (255, 255, 255))
draw = ImageDraw.Draw(image)
boxes = [ [ int(x*width) for x in box ] for box in boxes]
for i, box in enumerate(boxes):
draw.rectangle( ( (box[0], box[1]), (box[2], box[3]) ), outline=(0,0,0), width=2)
if descriptions is not None:
for idx, box in enumerate(boxes):
draw.text((box[0], box[1]), descriptions[idx], fill="black")
if caption is not None:
draw.text((0, 0), caption, fill=(255,102,102))
return image
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--output", type=str, default="OUTPUT", help="root folder for output")
parser.add_argument("--num_images", type=int, default=8, help="")
parser.add_argument("--guidance_scale", type=float, default=7.5, help="")
parser.add_argument("--negative_prompt", type=str, default='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality', help="")
parser.add_argument("--input_json", type=str, default='demos/demo_cat_dog_robin.json', help="json files for instance-level conditions")
parser.add_argument("--ckpt", type=str, default='pretrained/instancediffusion_sd15.pth', help="pretrained checkpoint")
parser.add_argument("--seed", type=int, default=0, help="random seed")
parser.add_argument("--alpha", type=float, default=0.75, help="the percentage of timesteps using grounding inputs")
parser.add_argument("--mis", type=float, default=0.36, help="the percentage of timesteps using MIS")
parser.add_argument("--cascade_strength", type=float, default=0.35, help="strength of SDXL Refiner.")
parser.add_argument("--test_config", type=str, default="configs/test_mask.yaml", help="config for model inference.")
args = parser.parse_args()
return_att_masks = False
ckpt = args.ckpt
seed = args.seed
save_folder_name = f"gc{args.guidance_scale}-seed{seed}-alpha{args.alpha}"
# read json files
with open(args.input_json) as f:
data = json.load(f)
# START: READ BOXES AND BINARY MASKS
boxes = []
binay_masks = []
# class_names = []
instance_captions = []
points_list = []
scribbles_list = []
prompt = data['caption']
crop_mask_image = False
for inst_idx in range(len(data['annos'])):
if "mask" not in data['annos'][inst_idx] or data['annos'][inst_idx]['mask'] == []:
instance_mask = np.zeros((512,512,1))
else:
instance_mask = decodeToBinaryMask(data['annos'][inst_idx]['mask'])
if crop_mask_image:
# crop the instance_mask to 512x512, centered at the center of the instance_mask image
# get the center of the instance_mask
center = np.array([instance_mask.shape[0]//2, instance_mask.shape[1]//2])
# get the top left corner of the crop
top_left = center - np.array([256, 256])
# get the bottom right corner of the crop
bottom_right = center + np.array([256, 256])
# crop the instance_mask
instance_mask = instance_mask[top_left[0]:bottom_right[0], top_left[1]:bottom_right[1]]
binay_masks.append(instance_mask)
data['width'] = 512
data['height'] = 512
else:
binay_masks.append(instance_mask)
if "bbox" not in data['annos'][inst_idx]:
boxes.append([0,0,0,0])
else:
boxes.append(data['annos'][inst_idx]['bbox'])
if 'point' in data['annos'][inst_idx]:
points_list.append(data['annos'][inst_idx]['point'])
if "scribble" in data['annos'][inst_idx]:
scribbles_list.append(data['annos'][inst_idx]['scribble'])
# class_names.append(data['annos'][inst_idx]['category_name'])
instance_captions.append(data['annos'][inst_idx]['caption'])
# show_binary_mask(binay_masks[inst_idx])
# END: READ BOXES AND BINARY MASKS
img_info = {}
img_info['width'] = data['width']
img_info['height'] = data['height']
locations = [rescale_box(box, img_info['width'], img_info['height']) for box in boxes]
phrases = instance_captions
# get points for each instance, if not provided, use the center of the box
if len(points_list) == 0:
points = [get_point_from_box(box) for box in locations]
else:
points = [rescale_points(point, img_info['width'], img_info['height']) for point in points_list]
# get binary masks for each instance, if not provided, use all zeros
binay_masks = []
for i in range(len(locations) - len(binay_masks)):
binay_masks.append(np.zeros((512,512,1)))
# get scribbles for each instance, if not provided, use random scribbles
if len(scribbles_list) == 0:
for idx, mask_fg in enumerate(binay_masks):
# get scribbles from segmentation if scribble is not provided
scribbles = sample_random_points_from_mask(mask_fg, 20)
scribbles = convert_points(scribbles, img_info)
scribbles_list.append(scribbles)
else:
scribbles_list = [rescale_scribbles(scribbles, img_info['width'], img_info['height']) for scribbles in scribbles_list]
scribbles_list = reorder_scribbles(scribbles_list)
print("num of inst captions, masks, boxes and points: ", len(phrases), len(binay_masks), len(locations), len(points))
# get polygons for each annotation
polygons_list = []
segs_list = []
for idx, mask_fg in enumerate(binay_masks):
# binary_mask = mask_fg[:,:,0]
polygons = sample_sparse_points_from_mask(mask_fg, k=256)
if polygons is None:
polygons = [0 for _ in range(256*2)]
polygons = convert_points(polygons, img_info)
polygons_list.append(polygons)
segs_list.append(resize(mask_fg.astype(np.float32), (512, 512, 1)))
segs = np.stack(segs_list).astype(np.float32).squeeze() if len(segs_list) > 0 else segs_list
polygons = polygons_list
scribbles = scribbles_list
meta_list = [
# grounding inputs for generation
dict(
ckpt = ckpt,
prompt = prompt,
phrases = phrases,
polygons = polygons,
scribbles = scribbles,
segs = segs,
locations = locations,
points = points,
alpha_type = [args.alpha, 0.0, 1-args.alpha],
save_folder_name=save_folder_name
),
]
# set seed
torch.manual_seed(seed)
starting_noise = torch.randn(args.num_images, 4, 64, 64).to(device)
model, autoencoder, text_encoder, diffusion, config = load_model_ckpt(meta_list[0]["ckpt"], args, device)
clip_model, clip_processor = create_clip_pretrain_model()
grounding_tokenizer_input = instantiate_from_config(config['grounding_tokenizer_input'])
model.grounding_tokenizer_input = grounding_tokenizer_input
for meta in meta_list:
run(meta, model, autoencoder, text_encoder, diffusion, clip_model, clip_processor, config, grounding_tokenizer_input, starting_noise, guidance_scale=args.guidance_scale)