-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsuccess-rate.R
33 lines (27 loc) · 1.15 KB
/
success-rate.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
library(ggplot2)
APR <- read.csv("./data/2016DI_Datafile5SquadFiles_20161212.csv")
APR.Football <- subset(
APR, SPORT_CODE == 4
)[c("SCL_UNITID", "SCL_NAME", "D1_FB_CONF_16", "APR_RATE_2016_1000",
"APR_RATE_2015_1000", "APR_RATE_2014_1000", "APR_RATE_2013_1000",
"APR_RATE_2012_1000", "APR_RATE_2011_1000", "APR_RATE_2010_1000",
"APR_RATE_2009_1000", "APR_RATE_2008_1000", "APR_RATE_2007_1000")]
APR.Football$APR_AVG <- rowMeans(
APR.Football[
c("APR_RATE_2016_1000", "APR_RATE_2015_1000", "APR_RATE_2014_1000",
"APR_RATE_2013_1000", "APR_RATE_2012_1000", "APR_RATE_2011_1000",
"APR_RATE_2010_1000", "APR_RATE_2009_1000", "APR_RATE_2008_1000",
"APR_RATE_2007_1000")
]
)
WL <- read.csv("./data/records.csv", header = TRUE)
all <- merge(
APR.Football, WL, by = "SCL_UNITID"
)[c("Team.name", "D1_FB_CONF_16", "Win.Pct", "APR_AVG")]
ggplot(all, aes(APR_AVG, Win.Pct)) +
geom_point(aes(colour = all$D1_FB_CONF_16)) +
xlab("Academic Progress Rate") +
ylab("Win Percent") +
labs(colour = "Conferences") +
geom_text(data = subset(all, APR_AVG > 980), aes(label = Team.name))
cor(all$APR_AVG, all$Win.Pct) ## 0.3592891