forked from dbuezas/esphome-bp5758
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsm2235.h
178 lines (161 loc) · 5.57 KB
/
sm2235.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#include "esphome.h"
#define KHZ 100
static const char *const TAG = "tuya-globe";
#define get_bp5758(id) (*((MyCustomLightOutput *)id))
enum BP5758_COLOR_IDX : uint8_t {
BLUE = 0,
GREEN = 1,
RED = 2,
WARM_WHITE = 3,
COLD_WHITE = 4,
};
/* Byte0 choice selections */
enum BYTE0_CHANNELSELECT : uint8_t {
DEFAULT = 0b00,
STANDBY = 0b00,
THREECHANNELS = 0b01,
TWOCHANNELS = 0b10,
FIVECHANNELS = 0b11,
};
/* Byte0 starting grayscale address */
enum BYTE0_STARTADDR : uint8_t {
DEFAULT = 0b000,
OUT1 = 0b000, //(R lamp) grayscale data address
OUT2 = 0b001, //(G lamp) grayscale data address
OUT3 = 0b010, //(B lamp) grayscale data address
OUT4 = 0b011, //(C lamp) grayscale data address
OUT5 = 0b100, //(W lamp) grayscale data address
};
void set_channel(uint8_t data[], BP5758_COLOR_IDX byte_idx, float brightness) {
uint16_t word = brightness * 1023; // 10 bits
if (word == 0 && brightness > 0) word++; // so that 1% is still on
data[byte_idx * 2 + 7] = word & 0b11111;
data[byte_idx * 2 + 8] = word >> 5;
}
class MyCustomLightOutput : public Component, public LightOutput {
protected:
uint8_t sda;
uint8_t scl;
bool constant_brightness = true;
bool color_interlock = true;
public:
bool use_dynamic_range = true;
MyCustomLightOutput(uint8_t sda_, uint8_t scl_) {
this->sda = sda_;
this->scl = scl_;
}
void set_constant_brightness(bool constant_brightness_) {
this->constant_brightness = constant_brightness_;
}
void set_color_interlock(bool color_interlock_) {
this->color_interlock = color_interlock_;
}
void setup() override {
pinMode(this->sda, OUTPUT);
pinMode(this->scl, OUTPUT);
end_i2c();
}
LightTraits get_traits() override {
auto traits = LightTraits();
if (this->color_interlock)
traits.set_supported_color_modes({light::ColorMode::RGB, light::ColorMode::COLD_WARM_WHITE});
else
traits.set_supported_color_modes({light::ColorMode::RGB_COLD_WARM_WHITE});
traits.set_min_mireds(153);
traits.set_max_mireds(500);
return traits;
}
void dynamic_range(float &bright_percent, uint8_t &mA_max) {
if (!this->use_dynamic_range) return;
if (bright_percent == 0) {
// by setting the range to zero now, flicker is avoided when the light is turned on
mA_max = 0;
} else {
float bright_mA = bright_percent * mA_max;
float brightness_target = 0.5; // set the range so the grayscale is half of max
int mA_target = bright_mA / brightness_target;
mA_target = constrain(mA_target, 1, mA_max);
bright_percent = bright_mA / mA_target;
if (mA_max>30){
// the maximum is 90mA. Also b[7] (128) will be ignored by the chip (see Byte2).
mA_max = constrain(mA_max, 1, 90);
// b[6] is 30mA instead of 64mA, see Byte2 in datasheet
mA_max -= 30;
mA_max |= 0b01000000;
}
mA_max = mA_target;
// ESP_LOGW(TAG, "mA_max:%d\tbright_percent:%f", mA_max, bright_percent);
}
}
void write_state(LightState *state) override {
float red, green, blue, cold_white, warm_white;
state->current_values_as_rgbww(&red, &green, &blue, &cold_white, &warm_white, this->constant_brightness);
// ESP_LOGW(TAG, "red:%f\tgreen:%f\tblue:%f\tcold:%f\twarm:%f",red, green, blue, cold_white, warm_white );
uint8_t red_max = 0b00010000, green_max = 0b00010000, blue_max = 0b00010000, cold_white_max = 0b00011010, warm_white_max = 0b00011010;
dynamic_range(red, red_max);
dynamic_range(green, green_max);
dynamic_range(blue, blue_max);
dynamic_range(cold_white, cold_white_max);
dynamic_range(warm_white, warm_white_max);
uint8_t data_size = 17;
uint8_t data[data_size] = {BP5758_ADDRESS::OUTPUT_1_TO_5_ENABLEMENT, 0b00011111, blue_max, green_max, red_max, warm_white_max, cold_white_max};
set_channel(data, BP5758_COLOR_IDX::RED, red);
set_channel(data, BP5758_COLOR_IDX::GREEN, green);
set_channel(data, BP5758_COLOR_IDX::BLUE, blue);
set_channel(data, BP5758_COLOR_IDX::COLD_WHITE, cold_white);
set_channel(data, BP5758_COLOR_IDX::WARM_WHITE, warm_white);
// ESP_LOGW(TAG, "warm_white:%f\twarm_white:%u\twarm_white_max:%u",warm_white,data[BP5758_COLOR_IDX::WARM_WHITE+1]*32+data[BP5758_COLOR_IDX::WARM_WHITE], warm_white_max );
this->send(data, data_size);
bool isOff = red == 0 && green == 0 && blue == 0 && cold_white == 0 && warm_white == 0;
if (isOff) {
this->send_sleep();
}
}
protected:
void send_sleep() {
uint8_t data_size = 1;
uint8_t data[data_size] = {BP5758_ADDRESS::OUTPUT_SLEEP};
this->send(data, data_size);
}
void wait() {
// delayMicroseconds(1000 / KHZ / 2);
delayMicroseconds(2);
}
void start_i2c() {
digitalWrite(this->sda, LOW);
this->wait();
digitalWrite(this->scl, LOW);
this->wait();
}
void end_i2c() {
digitalWrite(this->scl, HIGH);
this->wait();
digitalWrite(this->sda, HIGH);
this->wait();
}
void wait_for_ack() {
pinMode(this->sda, INPUT);
digitalWrite(this->scl, HIGH);
this->wait();
digitalWrite(this->scl, LOW);
this->wait();
pinMode(this->sda, OUTPUT);
}
void send(uint8_t data[], uint8_t size) {
this->start_i2c();
for (uint8_t i = 0; i < size; i++) {
uint8_t the_byte = data[i];
for (int bit_idx = 7; bit_idx >= 0; bit_idx--) {
bool bit = bitRead(the_byte, bit_idx);
digitalWrite(this->sda, bit);
this->wait();
digitalWrite(this->scl, HIGH);
this->wait();
digitalWrite(this->scl, LOW);
this->wait();
}
this->wait_for_ack();
}
this->end_i2c();
}
};