Python library to consume data from INPE'S CBERS4A and AMAZONIA1 catalog and perform operations.
pip install cbers4asat
- query: Do a search on INPE's catalog
- Parameters:
- location ->
List[float] | Tuple(int, int)
: Bounding box or Path Row of area of interest - initial_date: ->
date
: Range start date - end_date ->
date
: Range end date - cloud ->
int
: Cloud percentage - limit ->
int
: Limit of product returned by query - collections (Optional) ->
List[str]
: Collection dataset
- location ->
- Parameters:
- download: Download bands from query result
- Parameters:
- products ->
Dict | GeoDataFrame
: Returned scenes from query - bands ->
List[str]
: Available bands from scenes - threads (Optional) ->
int
: Thread limit for parallel download - outdir (Optional) ->
str
: Output directory - with_folder (Optional) ->
bool
: Option to enable download grouping
- products ->
- Parameters:
- to_geodataframe: Convert GeoJSON-like dictionary to GeoDataFrame
- Parameters:
- products ->
Dict
: Returned scenes from query - crs (Optional)->
str
: Coordinate reference (e.g.: EPSG:4326)
- products ->
- Parameters:
# Import cbers4asat and datetime lib
from src.cbers4asat import Cbers4aAPI
from datetime import date
# (Only required for downloading) Same Login used in http://www2.dgi.inpe.br/catalogo/explore
# You can add later using a setter: api.user('[email protected]')
api = Cbers4aAPI('[email protected]')
# Bounding box of area of interest
bbox = [-63.92944335937501,
-8.819260401678381,
-63.79211425781251,
-8.722218306198739]
# Date interval
initial_date = date(2021, 8, 25)
end_date = date(2021, 9, 25)
# Do a search on inpe's catalog
products = api.query(location=bbox,
initial_date=initial_date,
end_date=end_date,
cloud=100,
limit=100,
collections=['AMAZONIA1_WFI_L2_DN', 'CBERS4A_WPM_L4_DN']) # Optional
print(products)
# {'type': 'FeatureCollection', 'features': [{'type': 'Feature', 'id': 'AMAZONIA1_WFI03901620210911CB11', ...
from src.cbers4asat import Cbers4aAPI
from datetime import date
api = Cbers4aAPI('[email protected]')
# Path and row respectively
path_row = (229, 124)
initial_date = date(2021, 8, 25)
end_date = date(2021, 9, 25)
# Fazer uma busca no catálogo e exibir resultados
products = api.query(location=path_row,
initial_date=initial_date,
end_date=end_date,
cloud=100,
limit=100,
collections=['AMAZONIA1_WFI_L2_DN', 'CBERS4A_WPM_L4_DN']) # Optional
print(products)
# {'type': 'FeatureCollection', 'features': [{'type': 'Feature', 'id': 'CBERS4A_WPM22912420210830', ...
from src.cbers4asat import Cbers4aAPI
from datetime import date
api = Cbers4aAPI('[email protected]')
path_row = (229, 124)
initial_date = date(2021, 8, 25)
end_date = date(2021, 9, 25)
products = api.query(location=path_row,
initial_date=initial_date,
end_date=end_date,
cloud=100,
limit=1,
collections=['CBERS4A_WPM_L4_DN'])
# Chosen bands: red, green and blue
# Output is optional, if you not fill, the current directory is used
api.download(products=products,
bands=['red', 'green', 'blue'],
threads=3, # Threads for simultaneous download
outdir='./downloads',
with_folder=True) # Group downloaded bands into subfolder(s) in the ./downloads directory
# ./downloads directory will be like this if with_folder=true :
# downloads/
# +- CBERS4A_WPM22912420210830/
# ++- CBERS_4A_WPM_20210830_229_124_L4_BAND3.tif
# ++- CBERS_4A_WPM_20210830_229_124_L4_BAND2.tif
# ++- CBERS_4A_WPM_20210830_229_124_L4_BAND1.tif
from src.cbers4asat import Cbers4aAPI
from datetime import date
import geopandas as gpd
api = Cbers4aAPI('[email protected]')
path_row = (229, 124)
initial_date = date(2021, 8, 25)
end_date = date(2021, 9, 25)
products = api.query(location=path_row,
initial_date=initial_date,
end_date=end_date,
cloud=100,
limit=3,
collections=['CBERS4A_WPM_L4_DN'])
# Convert products collection to GeoDataFrame with SIRGAS 2000 Coordinate reference
gdf = api.to_geodataframe(products, 'EPSG:4674')
print(gdf.to_string())
from src.cbers4asat import Cbers4aAPI
from datetime import date
import geopandas as gpd
api = Cbers4aAPI('[email protected]')
bbox = [-63.92944335937501,
-8.819260401678381,
-63.79211425781251,
-8.722218306198739]
initial_date = date(2021, 8, 25)
end_date = date(2021, 9, 25)
products = api.query(location=bbox,
initial_date=initial_date,
end_date=end_date,
cloud=100,
limit=3,
collections=['CBERS4A_WPM_L4_DN'])
# You can filter using Geo-Pandas methods and then downloading...
gdf = api.to_geodataframe(products)
# Same logic for downloading GeoDataFrame and GeoJSON-like dictionary
api.download(products=gdf, bands=['red'], outdir='./downloads', with_folder=False)
We invite anyone to participate by contributing code, reporting bugs, fixing bugs, writing documentation and tutorials and discussing the future of this project. Please check CONTRIBUTING.md
Copyright (c) 2022 Gabriel Russo
Copyright (c) 2020 Sandro Klippel
Use is provided under the MIT License. See under LICENSE for more details