Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Issue Error Messages for Unsupported Operators #1

Merged
merged 9 commits into from
Apr 3, 2016

Conversation

hvanhovell
Copy link

@gatorsmile A PR for your PR. I think this should be what we are aiming for. I changed the code for visitChildren, and I had to change the predicate/predicated rules. Feel free to integrate this in your PR.

rxin and others added 9 commits April 2, 2016 12:44
…l` in IF/CASEWHEN

## What changes were proposed in this pull request?

Currently, `SimplifyConditionals` handles `true` and `false` to optimize branches. This PR improves `SimplifyConditionals` to take advantage of `null` conditions for `if` and `CaseWhen` expressions, too.

**Before**
```
scala> sql("SELECT IF(null, 1, 0)").explain()
== Physical Plan ==
WholeStageCodegen
:  +- Project [if (null) 1 else 0 AS (IF(CAST(NULL AS BOOLEAN), 1, 0))apache#4]
:     +- INPUT
+- Scan OneRowRelation[]
scala> sql("select case when cast(null as boolean) then 1 else 2 end").explain()
== Physical Plan ==
WholeStageCodegen
:  +- Project [CASE WHEN null THEN 1 ELSE 2 END AS CASE WHEN CAST(NULL AS BOOLEAN) THEN 1 ELSE 2 END#14]
:     +- INPUT
+- Scan OneRowRelation[]
```

**After**
```
scala> sql("SELECT IF(null, 1, 0)").explain()
== Physical Plan ==
WholeStageCodegen
:  +- Project [0 AS (IF(CAST(NULL AS BOOLEAN), 1, 0))apache#4]
:     +- INPUT
+- Scan OneRowRelation[]
scala> sql("select case when cast(null as boolean) then 1 else 2 end").explain()
== Physical Plan ==
WholeStageCodegen
:  +- Project [2 AS CASE WHEN CAST(NULL AS BOOLEAN) THEN 1 ELSE 2 END#4]
:     +- INPUT
+- Scan OneRowRelation[]
```

**Hive**
```
hive> select if(null,1,2);
OK
2
hive> select case when cast(null as boolean) then 1 else 2 end;
OK
2
```

## How was this patch tested?

Pass the Jenkins tests (including new extended test cases).

Author: Dongjoon Hyun <[email protected]>

Closes apache#12122 from dongjoon-hyun/SPARK-14338.
## What changes were proposed in this pull request?

This PR aims to fix all Scala-Style multiline comments into Java-Style multiline comments in Scala codes.
(All comment-only changes over 77 files: +786 lines, −747 lines)

## How was this patch tested?

Manual.

Author: Dongjoon Hyun <[email protected]>

Closes apache#12130 from dongjoon-hyun/use_multiine_javadoc_comments.
## What changes were proposed in this pull request?

Straggler references to Tachyon were removed:
- for docs, `tachyon` has been generalized as `off-heap memory`;
- for Mesos test suits, the key-value `tachyon:true`/`tachyon:false` has been changed to `os:centos`/`os:ubuntu`, since `os` is an example constrain used by the [Mesos official docs](http://mesos.apache.org/documentation/attributes-resources/).

## How was this patch tested?

Existing test suites.

Author: Liwei Lin <[email protected]>

Closes apache#12129 from lw-lin/tachyon-cleanup.
## What changes were proposed in this pull request?

Appends s3 specific configurations and spark.hadoop configurations to hive configuration.

## How was this patch tested?

Tested by running a job on cluster.

…figurations to hive configuration.

Author: Sital Kedia <[email protected]>

Closes apache#11876 from sitalkedia/hiveConf.
## What changes were proposed in this pull request?
JIRA: https://issues.apache.org/jira/browse/SPARK-13996

Filter codegen finds the attributes not null by checking IsNotNull(a) expression with a condition if child.output.contains(a). However, the current approach to checking it is not comprehensive. We can improve it.

E.g., for this plan:

    val rdd = sqlContext.sparkContext.makeRDD(Seq(Row(1, "1"), Row(null, "1"), Row(2, "2")))
    val schema = new StructType().add("k", IntegerType).add("v", StringType)
    val smallDF = sqlContext.createDataFrame(rdd, schema)
    val df = smallDF.filter("isnotnull(k + 1)")

The code snippet generated without this patch:

    /* 031 */   protected void processNext() throws java.io.IOException {
    /* 032 */     /*** PRODUCE: Filter isnotnull((k#0 + 1)) */
    /* 033 */
    /* 034 */     /*** PRODUCE: INPUT */
    /* 035 */
    /* 036 */     while (!shouldStop() && inputadapter_input.hasNext()) {
    /* 037 */       InternalRow inputadapter_row = (InternalRow) inputadapter_input.next();
    /* 038 */       /*** CONSUME: Filter isnotnull((k#0 + 1)) */
    /* 039 */       /* input[0, int] */
    /* 040 */       boolean filter_isNull = inputadapter_row.isNullAt(0);
    /* 041 */       int filter_value = filter_isNull ? -1 : (inputadapter_row.getInt(0));
    /* 042 */
    /* 043 */       /* isnotnull((input[0, int] + 1)) */
    /* 044 */       /* (input[0, int] + 1) */
    /* 045 */       boolean filter_isNull3 = true;
    /* 046 */       int filter_value3 = -1;
    /* 047 */
    /* 048 */       if (!filter_isNull) {
    /* 049 */         filter_isNull3 = false; // resultCode could change nullability.
    /* 050 */         filter_value3 = filter_value + 1;
    /* 051 */
    /* 052 */       }
    /* 053 */       if (!(!(filter_isNull3))) continue;
    /* 054 */
    /* 055 */       filter_metricValue.add(1);

With this patch:

    /* 031 */   protected void processNext() throws java.io.IOException {
    /* 032 */     /*** PRODUCE: Filter isnotnull((k#0 + 1)) */
    /* 033 */
    /* 034 */     /*** PRODUCE: INPUT */
    /* 035 */
    /* 036 */     while (!shouldStop() && inputadapter_input.hasNext()) {
    /* 037 */       InternalRow inputadapter_row = (InternalRow) inputadapter_input.next();
    /* 038 */       /*** CONSUME: Filter isnotnull((k#0 + 1)) */
    /* 039 */       /* input[0, int] */
    /* 040 */       boolean filter_isNull = inputadapter_row.isNullAt(0);
    /* 041 */       int filter_value = filter_isNull ? -1 : (inputadapter_row.getInt(0));
    /* 042 */
    /* 043 */       if (filter_isNull) continue;
    /* 044 */
    /* 045 */       filter_metricValue.add(1);

## How was this patch tested?

Existing tests.

Author: Liang-Chi Hsieh <[email protected]>

Closes apache#11810 from viirya/add-more-not-null-attrs.
…a double when they do not fit in a decimal

## What changes were proposed in this pull request?

https://issues.apache.org/jira/browse/SPARK-14231

Currently, JSON data source supports to infer `DecimalType` for big numbers and `floatAsBigDecimal` option which reads floating-point values as `DecimalType`.

But there are few restrictions in Spark `DecimalType` below:

1. The precision cannot be bigger than 38.
2. scale cannot be bigger than precision.

Currently, both restrictions are not being handled.

This PR handles the cases by inferring them as `DoubleType`. Also, the option name was changed from `floatAsBigDecimal` to `prefersDecimal` as suggested [here](https://issues.apache.org/jira/browse/SPARK-14231?focusedCommentId=15215579&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-15215579).

So, the codes below:

```scala
def doubleRecords: RDD[String] =
  sqlContext.sparkContext.parallelize(
    s"""{"a": 1${"0" * 38}, "b": 0.01}""" ::
    s"""{"a": 2${"0" * 38}, "b": 0.02}""" :: Nil)

val jsonDF = sqlContext.read
  .option("prefersDecimal", "true")
  .json(doubleRecords)
jsonDF.printSchema()
```

produces below:

- **Before**

```scala
org.apache.spark.sql.AnalysisException: Decimal scale (2) cannot be greater than precision (1).;
	at org.apache.spark.sql.types.DecimalType.<init>(DecimalType.scala:44)
	at org.apache.spark.sql.execution.datasources.json.InferSchema$.org$apache$spark$sql$execution$datasources$json$InferSchema$$inferField(InferSchema.scala:144)
	at org.apache.spark.sql.execution.datasources.json.InferSchema$.org$apache$spark$sql$execution$datasources$json$InferSchema$$inferField(InferSchema.scala:108)
	at
...
```

- **After**

```scala
root
 |-- a: double (nullable = true)
 |-- b: double (nullable = true)
```

## How was this patch tested?

Unit tests were used and `./dev/run_tests` for coding style tests.

Author: hyukjinkwon <[email protected]>

Closes apache#12030 from HyukjinKwon/SPARK-14231.
@gatorsmile
Copy link
Owner

Thank you! @hvanhovell I will do it. You are so nice!

@gatorsmile gatorsmile merged commit f3d886f into gatorsmile:hiveParserCommand Apr 3, 2016
gatorsmile pushed a commit that referenced this pull request Aug 10, 2016
## What changes were proposed in this pull request?
This patch introduces SQLQueryTestSuite, a basic framework for end-to-end SQL test cases defined in spark/sql/core/src/test/resources/sql-tests. This is a more standard way to test SQL queries end-to-end in different open source database systems, because it is more manageable to work with files.

This is inspired by HiveCompatibilitySuite, but simplified for general Spark SQL tests. Once this is merged, I can work towards porting SQLQuerySuite over, and eventually also move the existing HiveCompatibilitySuite to use this framework.

Unlike HiveCompatibilitySuite, SQLQueryTestSuite compares both the output schema and the output data (in string form).

When there is a mismatch, the error message looks like the following:

```
[info] - blacklist.sql !!! IGNORED !!!
[info] - number-format.sql *** FAILED *** (2 seconds, 405 milliseconds)
[info]   Expected "...147483648	-214748364[8]", but got "...147483648	-214748364[9]" Result should match for query #1 (SQLQueryTestSuite.scala:171)
[info]   org.scalatest.exceptions.TestFailedException:
[info]   at org.scalatest.Assertions$class.newAssertionFailedException(Assertions.scala:495)
[info]   at org.scalatest.FunSuite.newAssertionFailedException(FunSuite.scala:1555)
[info]   at org.scalatest.Assertions$class.assertResult(Assertions.scala:1171)
```

## How was this patch tested?
This is a test infrastructure change.

Author: petermaxlee <[email protected]>

Closes apache#14472 from petermaxlee/SPARK-16866.
gatorsmile pushed a commit that referenced this pull request Aug 24, 2016
## What changes were proposed in this pull request?
This patch introduces SQLQueryTestSuite, a basic framework for end-to-end SQL test cases defined in spark/sql/core/src/test/resources/sql-tests. This is a more standard way to test SQL queries end-to-end in different open source database systems, because it is more manageable to work with files.

This is inspired by HiveCompatibilitySuite, but simplified for general Spark SQL tests. Once this is merged, I can work towards porting SQLQuerySuite over, and eventually also move the existing HiveCompatibilitySuite to use this framework.

Unlike HiveCompatibilitySuite, SQLQueryTestSuite compares both the output schema and the output data (in string form).

When there is a mismatch, the error message looks like the following:

```
[info] - blacklist.sql !!! IGNORED !!!
[info] - number-format.sql *** FAILED *** (2 seconds, 405 milliseconds)
[info]   Expected "...147483648	-214748364[8]", but got "...147483648	-214748364[9]" Result should match for query #1 (SQLQueryTestSuite.scala:171)
[info]   org.scalatest.exceptions.TestFailedException:
[info]   at org.scalatest.Assertions$class.newAssertionFailedException(Assertions.scala:495)
[info]   at org.scalatest.FunSuite.newAssertionFailedException(FunSuite.scala:1555)
[info]   at org.scalatest.Assertions$class.assertResult(Assertions.scala:1171)
```

## How was this patch tested?
This is a test infrastructure change.

Author: petermaxlee <[email protected]>

Closes apache#14472 from petermaxlee/SPARK-16866.

(cherry picked from commit b9f8a11)
Signed-off-by: Wenchen Fan <[email protected]>
gatorsmile pushed a commit that referenced this pull request Dec 25, 2017
gatorsmile pushed a commit that referenced this pull request Jan 19, 2018
## What changes were proposed in this pull request?

There were two related fixes regarding `from_json`, `get_json_object` and `json_tuple` ([Fix #1](apache@c8803c0),
 [Fix #2](apache@86174ea)), but they weren't comprehensive it seems. I wanted to extend those fixes to all the parsers, and add tests for each case.

## How was this patch tested?

Regression tests

Author: Burak Yavuz <[email protected]>

Closes apache#20302 from brkyvz/json-invfix.
gatorsmile pushed a commit that referenced this pull request Jan 30, 2018
## What changes were proposed in this pull request?

There were two related fixes regarding `from_json`, `get_json_object` and `json_tuple` ([Fix #1](apache@c8803c0),
 [Fix #2](apache@86174ea)), but they weren't comprehensive it seems. I wanted to extend those fixes to all the parsers, and add tests for each case.

## How was this patch tested?

Regression tests

Author: Burak Yavuz <[email protected]>

Closes apache#20302 from brkyvz/json-invfix.

(cherry picked from commit e01919e)
Signed-off-by: hyukjinkwon <[email protected]>
gatorsmile pushed a commit that referenced this pull request Feb 25, 2018
## What changes were proposed in this pull request?

Solved two bugs to enable stream-stream self joins.

### Incorrect analysis due to missing MultiInstanceRelation trait
Streaming leaf nodes did not extend MultiInstanceRelation, which is necessary for the catalyst analyzer to convert the self-join logical plan DAG into a tree (by creating new instances of the leaf relations). This was causing the error `Failure when resolving conflicting references in Join:` (see JIRA for details).

### Incorrect attribute rewrite when splicing batch plans in MicroBatchExecution
When splicing the source's batch plan into the streaming plan (by replacing the StreamingExecutionPlan), we were rewriting the attribute reference in the streaming plan with the new attribute references from the batch plan. This was incorrectly handling the scenario when multiple StreamingExecutionRelation point to the same source, and therefore eventually point to the same batch plan returned by the source. Here is an example query, and its corresponding plan transformations.
```
val df = input.toDF
val join =
      df.select('value % 5 as "key", 'value).join(
        df.select('value % 5 as "key", 'value), "key")
```
Streaming logical plan before splicing the batch plan
```
Project [key#6, value#1, value#12]
+- Join Inner, (key#6 = key#9)
   :- Project [(value#1 % 5) AS key#6, value#1]
   :  +- StreamingExecutionRelation Memory[#1], value#1
   +- Project [(value#12 % 5) AS key#9, value#12]
      +- StreamingExecutionRelation Memory[#1], value#12  // two different leaves pointing to same source
```
Batch logical plan after splicing the batch plan and before rewriting
```
Project [key#6, value#1, value#12]
+- Join Inner, (key#6 = key#9)
   :- Project [(value#1 % 5) AS key#6, value#1]
   :  +- LocalRelation [value#66]           // replaces StreamingExecutionRelation Memory[#1], value#1
   +- Project [(value#12 % 5) AS key#9, value#12]
      +- LocalRelation [value#66]           // replaces StreamingExecutionRelation Memory[#1], value#12
```
Batch logical plan after rewriting the attributes. Specifically, for spliced, the new output attributes (value#66) replace the earlier output attributes (value#12, and value#1, one for each StreamingExecutionRelation).
```
Project [key#6, value#66, value#66]       // both value#1 and value#12 replaces by value#66
+- Join Inner, (key#6 = key#9)
   :- Project [(value#66 % 5) AS key#6, value#66]
   :  +- LocalRelation [value#66]
   +- Project [(value#66 % 5) AS key#9, value#66]
      +- LocalRelation [value#66]
```
This causes the optimizer to eliminate value#66 from one side of the join.
```
Project [key#6, value#66, value#66]
+- Join Inner, (key#6 = key#9)
   :- Project [(value#66 % 5) AS key#6, value#66]
   :  +- LocalRelation [value#66]
   +- Project [(value#66 % 5) AS key#9]   // this does not generate value, incorrect join results
      +- LocalRelation [value#66]
```

**Solution**: Instead of rewriting attributes, use a Project to introduce aliases between the output attribute references and the new reference generated by the spliced plans. The analyzer and optimizer will take care of the rest.
```
Project [key#6, value#1, value#12]
+- Join Inner, (key#6 = key#9)
   :- Project [(value#1 % 5) AS key#6, value#1]
   :  +- Project [value#66 AS value#1]   // solution: project with aliases
   :     +- LocalRelation [value#66]
   +- Project [(value#12 % 5) AS key#9, value#12]
      +- Project [value#66 AS value#12]    // solution: project with aliases
         +- LocalRelation [value#66]
```

## How was this patch tested?
New unit test

Author: Tathagata Das <[email protected]>

Closes apache#20598 from tdas/SPARK-23406.
gatorsmile pushed a commit that referenced this pull request Apr 30, 2018
This is a backport of apache#20598.

## What changes were proposed in this pull request?

Solved two bugs to enable stream-stream self joins.

### Incorrect analysis due to missing MultiInstanceRelation trait
Streaming leaf nodes did not extend MultiInstanceRelation, which is necessary for the catalyst analyzer to convert the self-join logical plan DAG into a tree (by creating new instances of the leaf relations). This was causing the error `Failure when resolving conflicting references in Join:` (see JIRA for details).

### Incorrect attribute rewrite when splicing batch plans in MicroBatchExecution
When splicing the source's batch plan into the streaming plan (by replacing the StreamingExecutionPlan), we were rewriting the attribute reference in the streaming plan with the new attribute references from the batch plan. This was incorrectly handling the scenario when multiple StreamingExecutionRelation point to the same source, and therefore eventually point to the same batch plan returned by the source. Here is an example query, and its corresponding plan transformations.
```
val df = input.toDF
val join =
      df.select('value % 5 as "key", 'value).join(
        df.select('value % 5 as "key", 'value), "key")
```
Streaming logical plan before splicing the batch plan
```
Project [key#6, value#1, value#12]
+- Join Inner, (key#6 = key#9)
   :- Project [(value#1 % 5) AS key#6, value#1]
   :  +- StreamingExecutionRelation Memory[#1], value#1
   +- Project [(value#12 % 5) AS key#9, value#12]
      +- StreamingExecutionRelation Memory[#1], value#12  // two different leaves pointing to same source
```
Batch logical plan after splicing the batch plan and before rewriting
```
Project [key#6, value#1, value#12]
+- Join Inner, (key#6 = key#9)
   :- Project [(value#1 % 5) AS key#6, value#1]
   :  +- LocalRelation [value#66]           // replaces StreamingExecutionRelation Memory[#1], value#1
   +- Project [(value#12 % 5) AS key#9, value#12]
      +- LocalRelation [value#66]           // replaces StreamingExecutionRelation Memory[#1], value#12
```
Batch logical plan after rewriting the attributes. Specifically, for spliced, the new output attributes (value#66) replace the earlier output attributes (value#12, and value#1, one for each StreamingExecutionRelation).
```
Project [key#6, value#66, value#66]       // both value#1 and value#12 replaces by value#66
+- Join Inner, (key#6 = key#9)
   :- Project [(value#66 % 5) AS key#6, value#66]
   :  +- LocalRelation [value#66]
   +- Project [(value#66 % 5) AS key#9, value#66]
      +- LocalRelation [value#66]
```
This causes the optimizer to eliminate value#66 from one side of the join.
```
Project [key#6, value#66, value#66]
+- Join Inner, (key#6 = key#9)
   :- Project [(value#66 % 5) AS key#6, value#66]
   :  +- LocalRelation [value#66]
   +- Project [(value#66 % 5) AS key#9]   // this does not generate value, incorrect join results
      +- LocalRelation [value#66]
```

**Solution**: Instead of rewriting attributes, use a Project to introduce aliases between the output attribute references and the new reference generated by the spliced plans. The analyzer and optimizer will take care of the rest.
```
Project [key#6, value#1, value#12]
+- Join Inner, (key#6 = key#9)
   :- Project [(value#1 % 5) AS key#6, value#1]
   :  +- Project [value#66 AS value#1]   // solution: project with aliases
   :     +- LocalRelation [value#66]
   +- Project [(value#12 % 5) AS key#9, value#12]
      +- Project [value#66 AS value#12]    // solution: project with aliases
         +- LocalRelation [value#66]
```

## How was this patch tested?
New unit test

Author: Tathagata Das <[email protected]>

Closes apache#20765 from tdas/SPARK-23406-2.3.
gatorsmile pushed a commit that referenced this pull request Apr 16, 2019
…te temporary path in local staging directory

## What changes were proposed in this pull request?
Th environment of my cluster as follows:
```
OS:Linux version 2.6.32-220.7.1.el6.x86_64 (mockbuildc6b18n3.bsys.dev.centos.org) (gcc version 4.4.6 20110731 (Red Hat 4.4.6-3) (GCC) ) #1 SMP Wed Mar 7 00:52:02 GMT 2012
Hadoop: 2.7.2
Spark: 2.3.0 or 3.0.0(master branch)
Hive: 1.2.1
```

My spark run on deploy mode yarn-client.

If I execute the SQL `insert overwrite local directory '/home/test/call_center/' select * from call_center`, a HiveException will appear as follows:
`Caused by: org.apache.hadoop.hive.ql.metadata.HiveException: java.io.IOException: Mkdirs failed to create file:/home/xitong/hive/stagingdir_hive_2019-02-19_17-31-00_678_1816816774691551856-1/-ext-10000/_temporary/0/_temporary/attempt_20190219173233_0002_m_000000_3 (exists=false, cwd=file:/data10/yarn/nm-local-dir/usercache/xitong/appcache/application_1543893582405_6126857/container_e124_1543893582405_6126857_01_000011)
at org.apache.hadoop.hive.ql.io.HiveFileFormatUtils.getHiveRecordWriter(HiveFileFormatUtils.java:249)`
Current spark sql generate a local temporary path in local staging directory.The schema of local temporary path start with `file`, so the HiveException appears.
This PR change the local temporary path to HDFS temporary path, and use DistributedFileSystem instance copy the data from HDFS temporary path to local directory.
If Spark run on local deploy mode, 'insert overwrite local directory' works fine.
## How was this patch tested?

UT cannot support yarn-client mode.The test is in my product environment.

Closes apache#23841 from beliefer/fix-bug-of-insert-overwrite-local-dir.

Authored-by: gengjiaan <[email protected]>
Signed-off-by: Sean Owen <[email protected]>
gatorsmile pushed a commit that referenced this pull request Apr 16, 2019
## What changes were proposed in this pull request?

This PR supports `OpenJ9` in addition to `IBM JDK` and `OpenJDK` in Spark by handling `System.getProperty("java.vendor") = "Eclipse OpenJ9"`.

In `inferDefaultMemory()` and `getKrb5LoginModuleName()`, this PR uses non `IBM` way.

```
$ ~/jdk-11.0.2+9_openj9-0.12.1/bin/jshell
|  Welcome to JShell -- Version 11.0.2
|  For an introduction type: /help intro

jshell> System.out.println(System.getProperty("java.vendor"))
Eclipse OpenJ9

jshell> System.out.println(System.getProperty("java.vm.info"))
JRE 11 Linux amd64-64-Bit Compressed References 20190204_127 (JIT enabled, AOT enabled)
OpenJ9   - 90dd8cb40
OMR      - d2f4534b
JCL      - 289c70b6844 based on jdk-11.0.2+9

jshell> System.out.println(Class.forName("com.ibm.lang.management.OperatingSystemMXBean").getDeclaredMethod("getTotalPhysicalMemory"))
public abstract long com.ibm.lang.management.OperatingSystemMXBean.getTotalPhysicalMemory()

jshell> System.out.println(Class.forName("com.sun.management.OperatingSystemMXBean").getDeclaredMethod("getTotalPhysicalMemorySize"))
public abstract long com.sun.management.OperatingSystemMXBean.getTotalPhysicalMemorySize()

jshell> System.out.println(Class.forName("com.ibm.security.auth.module.Krb5LoginModule"))
|  Exception java.lang.ClassNotFoundException: com.ibm.security.auth.module.Krb5LoginModule
|        at Class.forNameImpl (Native Method)
|        at Class.forName (Class.java:339)
|        at (#1:1)

jshell> System.out.println(Class.forName("com.sun.security.auth.module.Krb5LoginModule"))
class com.sun.security.auth.module.Krb5LoginModule
```

## How was this patch tested?

Existing test suites
Manual testing with OpenJ9.

Closes apache#24308 from kiszk/SPARK-27397.

Authored-by: Kazuaki Ishizaki <[email protected]>
Signed-off-by: Sean Owen <[email protected]>
gatorsmile pushed a commit that referenced this pull request Aug 23, 2019
…comparison assertions

## What changes were proposed in this pull request?

This PR removes a few hardware-dependent assertions which can cause a failure in `aarch64`.

**x86_64**
```
rootdonotdel-openlab-allinone-l00242678:/home/ubuntu# uname -a
Linux donotdel-openlab-allinone-l00242678 4.4.0-154-generic apache#181-Ubuntu SMP Tue Jun 25 05:29:03 UTC
2019 x86_64 x86_64 x86_64 GNU/Linux

scala> import java.lang.Float.floatToRawIntBits
import java.lang.Float.floatToRawIntBits
scala> floatToRawIntBits(0.0f/0.0f)
res0: Int = -4194304
scala> floatToRawIntBits(Float.NaN)
res1: Int = 2143289344
```

**aarch64**
```
[rootarm-huangtianhua spark]# uname -a
Linux arm-huangtianhua 4.14.0-49.el7a.aarch64 #1 SMP Tue Apr 10 17:22:26 UTC 2018 aarch64 aarch64 aarch64 GNU/Linux

scala> import java.lang.Float.floatToRawIntBits
import java.lang.Float.floatToRawIntBits
scala> floatToRawIntBits(0.0f/0.0f)
res1: Int = 2143289344
scala> floatToRawIntBits(Float.NaN)
res2: Int = 2143289344
```

## How was this patch tested?

Pass the Jenkins (This removes the test coverage).

Closes apache#25186 from huangtianhua/special-test-case-for-aarch64.

Authored-by: huangtianhua <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
gatorsmile pushed a commit that referenced this pull request Nov 9, 2019
### What changes were proposed in this pull request?
`org.apache.spark.sql.kafka010.KafkaDelegationTokenSuite` failed lately. After had a look at the logs it just shows the following fact without any details:
```
Caused by: sbt.ForkMain$ForkError: sun.security.krb5.KrbException: Server not found in Kerberos database (7) - Server not found in Kerberos database
```
Since the issue is intermittent and not able to reproduce it we should add more debug information and wait for reproduction with the extended logs.

### Why are the changes needed?
Failing test doesn't give enough debug information.

### Does this PR introduce any user-facing change?
No.

### How was this patch tested?
I've started the test manually and checked that such additional debug messages show up:
```
>>> KrbApReq: APOptions are 00000000 00000000 00000000 00000000
>>> EType: sun.security.krb5.internal.crypto.Aes128CtsHmacSha1EType
Looking for keys for: kafka/localhostEXAMPLE.COM
Added key: 17version: 0
Added key: 23version: 0
Added key: 16version: 0
Found unsupported keytype (3) for kafka/localhostEXAMPLE.COM
>>> EType: sun.security.krb5.internal.crypto.Aes128CtsHmacSha1EType
Using builtin default etypes for permitted_enctypes
default etypes for permitted_enctypes: 17 16 23.
>>> EType: sun.security.krb5.internal.crypto.Aes128CtsHmacSha1EType
MemoryCache: add 1571936500/174770/16C565221B70AAB2BEFE31A83D13A2F4/client/localhostEXAMPLE.COM to client/localhostEXAMPLE.COM|kafka/localhostEXAMPLE.COM
MemoryCache: Existing AuthList:
#3: 1571936493/200803/8CD70D280B0862C5DA1FF901ECAD39FE/client/localhostEXAMPLE.COM
#2: 1571936499/985009/BAD33290D079DD4E3579A8686EC326B7/client/localhostEXAMPLE.COM
#1: 1571936499/995208/B76B9D78A9BE283AC78340157107FD40/client/localhostEXAMPLE.COM
```

Closes apache#26252 from gaborgsomogyi/SPARK-29580.

Authored-by: Gabor Somogyi <[email protected]>
Signed-off-by: Dongjoon Hyun <[email protected]>
gatorsmile pushed a commit that referenced this pull request Mar 5, 2020
### What changes were proposed in this pull request?
Currently the join operators are not well abstracted, since there are lot of common logic. A trait can be created for easier pattern matching and other future handiness. This is a follow-up PR based on comment
apache#27509 (comment) .

This PR refined from the following aspects:
1. Refined structure of all physical join operators
2. Add missing joinType field for CartesianProductExec operator
3. Refined codes related to Explain Formatted

The EXPLAIN FORMATTED changes are
1. Converge all join operator `verboseStringWithOperatorId` implementations to `BaseJoinExec`. Join condition displayed, and join keys displayed if it’s not empty.
2. `#1` will add Join condition to `BroadcastNestedLoopJoinExec`.
3. `#1` will **NOT** affect `CartesianProductExec`,`SortMergeJoin` and `HashJoin`s, since they already got there override implementation before.
4. Converge all join operator `simpleStringWithNodeId` to `BaseJoinExec`, which will enhance the one line description for `CartesianProductExec` with `JoinType` added.
5. Override `simpleStringWithNodeId` in `BroadcastNestedLoopJoinExec` to show `BuildSide`, which was only done for `HashJoin`s before.

### Why are the changes needed?
Make the code consistent with other operators and for future handiness of join operators.

### Does this PR introduce any user-facing change?
No

### How was this patch tested?
Existing tests

Closes apache#27595 from Eric5553/RefineJoin.

Authored-by: Eric Wu <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

7 participants