-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest.py
82 lines (66 loc) · 3.06 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch
from torch.autograd import Variable
from torch.utils.data import DataLoader
import torchvision
import torch.nn.functional as F
import torch.optim as optim
from dataset_loader import MyTestData
from functions import imsave
import argparse
import os
from MMNet import RGBres2net50,Depthres2net50,FusionNet
# torch.set_num_threads(4)
parser=argparse.ArgumentParser()
parser.add_argument('--phase', type=str, default='test', help='train or test')
parser.add_argument('--param', type=str, default=True, help='path to pre-trained parameters')
parser.add_argument('--test_dataroot', type=str, default='./test_datasets', help='path to data')
parser.add_argument('--pre_trained_root', type=str, default='./train_model', help='path to pre trained')
args = parser.parse_args()
cuda = torch.cuda.is_available()
"""""""""""~~~ dataset loader ~~~"""""""""
print ('data already')
""""""""""" ~~~nets~~~ """""""""
model_rgb = RGBres2net50()
model_depth = Depthres2net50()
model_fusion = FusionNet()
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
if args.param is True:
model_rgb.load_state_dict(torch.load(os.path.join(args.pre_trained_root, 'RGB.pth'),map_location=device))
model_depth.load_state_dict(torch.load(os.path.join(args.pre_trained_root, 'Depth.pth'),map_location=device))
model_fusion.load_state_dict(torch.load(os.path.join(args.pre_trained_root, 'fusion.pth'),map_location=device))
if __name__ == '__main__':
if cuda:
model_rgb = model_rgb.cuda()
model_depth = model_depth.cuda()
model_fusion = model_fusion.cuda()
test_datasets = ['NLPR']
for dataset in test_datasets:
save_path = './test_Results/' + dataset + '/'
if not os.path.exists(save_path):
os.makedirs(save_path)
test_dataRoot = './test_datasets/' + dataset + '/'
test_loader = torch.utils.data.DataLoader(MyTestData(test_dataRoot, transform=True),
batch_size=1, shuffle=True, num_workers=0, pin_memory=True)
for id, (data, depth, img_name, img_size) in enumerate(test_loader):
if torch.cuda.is_available():
inputs = Variable(data).cuda()
inputs_depth = Variable(depth).cuda()
else:
inputs = Variable(data)
inputs_depth = Variable(depth)
n, c, h, w = inputs.size()
depth = inputs_depth.view(n, h, w, 1).repeat(1, 1, 1, c)
depth = depth.transpose(3, 1)
depth = depth.transpose(3, 2)
R1,R2,R3,R4,R5 = model_rgb(inputs)
D1,D2,D3,D4,D5 = model_depth(depth)
outputs_all = model_fusion(R1,R2,R3,R4,R5,D1,D2,D3,D4,D5)
outputs_all = F.softmax(outputs_all, dim=1)
outputs1 = outputs_all[0][1]
outputs = outputs1.cpu().data.resize_(h, w)
imsave(os.path.join(save_path, img_name[0] + '.png'), outputs, img_size)
print('The ' + dataset + ' testing process has finished!')
print('The all testing process has finished!')