-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdriver.py
251 lines (213 loc) · 8.7 KB
/
driver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
"""
Copyright (c) 2020 Georgios Damaskinos
All rights reserved.
@author Georgios Damaskinos <[email protected]>
This source code is licensed under the MIT license found in the
LICENSE file in the root directory of this source tree.
"""
import os
import multiprocessing
import argparse
import time
import sys
from os.path import expanduser
home = expanduser("~")
import itertools
from functools import partial
import subprocess
import pandas as pd
import socket
parser = argparse.ArgumentParser()
parser.add_argument("--lambda", type=float, nargs='+',
default=[1.0], action='store')
parser.add_argument("--sigma", type=float, nargs='+',
default=[0.0], action='store')
parser.add_argument("--eps", type=float, nargs='+',
default=[0.0], action='store')
parser.add_argument("--C", type=float, nargs='+',
default=[0.0], action='store')
parser.add_argument("--sample_ratio", type=float, nargs='+',
default=[1.0], action='store')
parser.add_argument("--lot_ratio", type=float, nargs='+',
default=[1.0], action='store')
parser.add_argument("--max_iter", type=int, nargs='+',
default=[10], action='store')
parser.add_argument("--out_iter", type=int, nargs='+',
default=[1], action='store')
parser.add_argument("--K", type=int, nargs='+',
default=[1], action='store')
parser.add_argument("--gamma", type=float, nargs='+',
default=[1.0], action='store')
parser.add_argument("--seed", type=int, nargs='+',
default=[1], action='store')
parser.add_argument('--dual', action='store_true')
parser.add_argument("--app", type=str, default='RR', action='store')
parser.add_argument("--solver", type=str, default='SCD', action='store')
parser.add_argument("--dataset", type=str, default='msd', action='store')
parser.add_argument('--valid_size', type=float, default=0, action='store')
parser.add_argument('--pool_size', type=int, action='store',
help='Maximum number of parallel processes to spawn')
parser.add_argument("--outputPrefix", type=str, action='store',
help='Output prefix for multi process output logs; if None prints to stdout')
# preprocess args before imports to set parallelism
args = sys.argv[1:]
print("Executing on: %s" % socket.gethostname())
print("Reproduce with:\n```python " + " ".join(sys.argv) + "```")
args = parser.parse_args(args)
param_names = ['lambda', 'sigma', 'eps', 'C', 'sample_ratio',
'lot_ratio', 'max_iter', 'out_iter', 'K', 'gamma', 'seed']
# param combinations
param_combs = list(itertools.product(*map(lambda param: vars(args)[param], param_names)))
# each row holds the hyperparameters for 1 run
run_params = pd.DataFrame(columns=param_names)
for run_idx in range(len(param_combs)):
run_params.loc[run_idx] = param_combs[run_idx]
param_types = {}
for param in param_names:
if type(vars(args)[param][0]) == int:
param_types[param] = 'int32'
else:
param_types[param] = 'float'
run_params = run_params.astype(param_types)
if not args.pool_size is None:
pool_size = args.pool_size
else:
pool_size = len(run_params)
# define parallelism for each process
total_cores = multiprocessing.cpu_count()
threads = max(1, int(total_cores/pool_size - 2))
print("Num threads: %g" % threads)
os.environ["NUMEXPR_NUM_THREADS"] = str(threads)
os.environ["OMP_NUM_THREADS"] = str(threads)
os.environ["MKL_NUM_THREADS"] = str(threads)
import numpy as np
np.random.seed(1)
from sklearn import linear_model
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
from sklearn import preprocessing
from sklearn.metrics import confusion_matrix, roc_curve, auc, log_loss, mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
import csv
import scipy
import pickle
from inspect import signature
import preprocessor
import standaloneLR
import standaloneRR
import standaloneSVM
import accountant
def parallelTrainEval(run_params, dual, app, solver, valid_size, start_time, outputPrefix=None, jobID=0):
"""Wrapper around trainEval for parallel execution
Must have globally defined: X_train, Y_train, X_test, Y_test
Args:
run_params.iloc[jobID]: parameter values for this job
...
outputLogs (list): output file for logging for each job
"""
print("STARTING thread: %d" % jobID, flush=True)
prev_stdout = sys.stdout
if outputPrefix is not None:
outputFilename = outputPrefix
for col in run_params.columns:
outputFilename += col[:2] + "{:g}".format(run_params[col].iloc[jobID]) + '_'
outputFilename = outputFilename[:-1]
if os.path.exists(outputFilename):
with open(outputFilename) as f:
txt = f.read()
if ('Training complete!' in txt) or ('Stopped training' in txt):
# log exists - skip
print("SKIPPING...\nFINISHING thread: %d / %d" % (jobID, len(run_params)), flush=True)
return
sys.stdout = open(outputFilename, "w")
try:
ret = trainEval(X_train, Y_train, X_test, Y_test, valid_size=valid_size,
lambda_=run_params['lambda'].iloc[jobID],
sigma=run_params['sigma'].iloc[jobID],
eps=run_params['eps'].iloc[jobID],
C=run_params['C'].iloc[jobID],
sample_ratio=run_params['sample_ratio'].iloc[jobID],
lot_ratio=run_params['lot_ratio'].iloc[jobID],
max_iter=run_params['max_iter'].iloc[jobID],
out_iter=run_params['out_iter'].iloc[jobID],
K=run_params['K'].iloc[jobID],
gamma=run_params['gamma'].iloc[jobID],
seed=run_params['seed'].iloc[jobID],
dual=dual, app=app, solver=solver)
except ArithmeticError as e:
print("Stopped training: ", str(e), flush=True)
sys.stdout = prev_stdout
print("FINISHING thread: %d / %d\tElapsed time: %g secs" % (
jobID, len(run_params), time.time()-start_time), flush=True)
return
def trainEval(X_train, Y_train, X_test, Y_test, valid_size=0, lambda_=1.0,
sigma=0, eps=0, sample_ratio=1, lot_ratio=1, C=0,
dual=True, app='RR', solver='SCD', K=1, gamma=1, out_iter=1,
max_iter=10, sigmaP=None, verbose=False, seed=1):
"""Training and evaluation procedure for a hardcoded optimizer
Args:
valid_size (float): size (percentage of the training size) for the
validation set. If 0 => validation set = test set
lambda_ (float): Regularization strength. It must be a positive float.
Larger regularization values imply stronger regularization.
app (str): 'RR', 'LR', 'SVM'
solver (str): see optimizer.py#__init__
see standaloneRR for the rest
Returns:
return of solver.fit()
performance measurements (e.g., MAE for regression, Accuracy for classification)
"""
np.random.seed(seed)
"""Solver"""
# standalone solver
if app == 'LR':
optimizer = standaloneLR.LogisticRegression
elif app == 'RR':
optimizer = standaloneRR.RidgeRegression
elif app == 'SVM':
optimizer = standaloneSVM.SVM
else:
raise NotImplementedError("Unknown app")
solver = optimizer(fit_intercept=False, seed=seed,
dual=dual, verbose=verbose, sigma=sigma, eps=eps, C=C, regularizer=lambda_,
sample_ratio=sample_ratio, lot_ratio=lot_ratio, solver=solver, gamma=gamma,
K=K, out_iter=out_iter, max_iter=max_iter, sigmaP=sigmaP)
"""Training"""
print("Valid_size = %g" % valid_size, flush=True)
if valid_size == 0:
X_val = X_test
Y_val = Y_test
else:
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train,
test_size=valid_size)
print("Fitting for (train, validation) shapes: (%s, %s)" % (
X_train.shape, X_val.shape), flush=True)
t0 = time.time()
if len(signature(solver.fit).parameters) == 4:
# monitor cost+performance (!only for standalone solvers)
ret = solver.fit(X_train, Y_train, X_val, Y_val)
else:
ret = solver.fit(X_train, Y_train) # monitor only training cost
print("Training time (s): {0:.2f}".format(time.time()-t0))
"""Evaluation"""
solver.evaluate(X_test, Y_test)
print("Training complete!", flush=True)
return ret
def main(args):
print("Loading data...", flush=True)
global X_train, Y_train, X_test, Y_test
X_train, Y_train, X_test, Y_test = preprocessor.load(args.dataset)
print('X_train:',X_train.shape)
print('Y_train:',Y_train.shape)
print('X_test:',X_test.shape)
print('Y_test:',Y_test.shape, flush=True)
# hyper-parameter search with multiprocessing
jobIDs = np.array(range(0, len(run_params)))
part = partial(parallelTrainEval, run_params, args.dual, args.app, args.solver,
args.valid_size, time.time(), args.outputPrefix)
pool = multiprocessing.Pool(args.pool_size)
pool.map(part, jobIDs)
pool.close()
pool.join()
print("EXECUTION DONE", flush=True)
if __name__ == "__main__":
main(args)