-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocessor.py
667 lines (500 loc) · 19.6 KB
/
preprocessor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
"""
Copyright (c) 2020 Georgios Damaskinos
All rights reserved.
@author Georgios Damaskinos <[email protected]>
This source code is licensed under the MIT license found in the
LICENSE file in the root directory of this source tree.
"""
import numpy as np
import pandas as pd
from pandas.api.types import CategoricalDtype
import random
random.seed(1)
np.random.seed(1)
import sys
import os
import shutil
import wget
import bz2
from sklearn.model_selection import train_test_split
from sklearn import datasets, preprocessing
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.preprocessing import StandardScaler
from os.path import expanduser
home = expanduser("~")
def load(name):
if name == 'news20':
return news20()
elif name == 'news20small':
return news20small()
elif name == 'adult':
return adult()
elif name == 'phishing':
return phishing()
elif name == 'mushrooms':
return mushrooms()
elif name == 'breastcancer':
return breast_cancer()
elif name == 'higgs':
return higgs()
elif name == 'iris':
return iris()
elif name == 'epsilon':
return epsilon()
elif name == 'banking':
return banking()
elif name == 'diabetes':
return diabetes()
elif name == 'E2006small':
return E2006small()
elif name == 'E2006':
return E2006()
elif name == 'msd':
return msd()
elif name == 'cadata':
return cadata()
elif name == 'cpusmall':
return cpusmall()
elif name == 'abalone':
return abalone()
else:
print("Dataset name not found", flush=True)
def iris():
iris = datasets.load_iris()
X = iris.data[:, :2]
y = (iris.target != 0) * 1
y[y == 0] = -1
X_train, X_test, Y_train, Y_test = train_test_split(X,y,test_size=0.2)
return X_train, Y_train, X_test, Y_test
def higgs_sample(data_path='dac_sample.txt'):
"""Splits higgs dataset sample given for PCML course"""
data = pd.read_csv(data_path, sep='\t', header=None)#, nrows= 1000)
features_col = np.arange(1,39)
# data.dropna(axis='index',subset=features_col, inplace=True) #drop all lines with NaN values
data.fillna(value=0, inplace=True) #fill all NaN values with 0
numerical_features_col = np.arange(1,14)
categorical_features_col = np.arange(14,39)
features = data.iloc[:,1:39].copy()
labels = data.iloc[:,0].copy()
for col in categorical_features_col:
features[col] = features[categorical_features_col][col].astype('category')
cat_cols = features.select_dtypes(['category']).columns
features[cat_cols] = features[cat_cols].apply(lambda col : col.cat.codes)
# Create unbalanced dataset
indexes = []
ones = labels[labels == 1]
zeros = labels[labels == 0]
for i in range(2000):
indexes.append(ones.index[i])
for i in range(len(zeros)):
indexes.append(zeros.index[i])
len(indexes)
features = features.iloc[indexes]
labels = labels[indexes]
# Normalize
features = (features - features.mean()) / (features.max() - features.min())
X_train, X_test, Y_train, Y_test = train_test_split(features, labels, test_size=0.33, random_state=4)
X_train = X_train.values
Y_train = Y_train.values
X_test = X_test.values
Y_test = Y_test.values
Y_train[Y_train == 0] = -1
Y_test[Y_test == 0] = -1
N, M = X_train.shape
return X_train, Y_train, X_test, Y_test
def higgs(data_path=home+'/datasets/higgs/HIGGS'):
try:
open(data_path, 'r')
except FileNotFoundError as e:
print(str(e))
print("Download HIGGS.bz2 from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/HIGGS.bz2")
return None, None, None, None
X, Y = datasets.load_svmlight_file(data_path)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25,
random_state=42)
X_train = preprocessing.normalize(X_train, axis=0, norm='l1')
X_test = preprocessing.normalize(X_test, axis=0, norm='l1')
return X_train, Y_train, X_test, Y_test
def phishing(data_path=home+'/datasets/phishing/phishing'):
try:
open(data_path, 'r')
except FileNotFoundError as e:
print(str(e))
print("Download phishing from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/phishing")
return None, None, None, None
X, Y = datasets.load_svmlight_file(data_path)
X = X.toarray()
Y[Y == 0] = -1
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25,
random_state=42)
s = preprocessing.MaxAbsScaler()
X_train = s.fit_transform(X_train)
X_test = s.transform(X_test)
X_train = preprocessing.normalize(X_train)
X_test = preprocessing.normalize(X_test)
return X_train, Y_train, X_test, Y_test
def mushrooms(data_path=home+'/datasets/mushrooms/mushrooms'):
try:
open(data_path, 'r')
except FileNotFoundError as e:
print(str(e))
print("Download phishing from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/mushrooms")
return None, None, None, None
X, Y = datasets.load_svmlight_file(data_path)
X = X.toarray()
Y[Y == 2] = -1
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25,
random_state=42)
s = preprocessing.MaxAbsScaler()
X_train = s.fit_transform(X_train)
X_test = s.transform(X_test)
X_train = preprocessing.normalize(X_train)
X_test = preprocessing.normalize(X_test)
return X_train, Y_train, X_test, Y_test
def epsilon(train_path=home+'/datasets/epsilon/epsilon_normalized',
test_path=home+'/datasets/epsilon/epsilon_normalized.t'):
try:
open(train_path, 'r')
open(test_path, 'r')
except FileNotFoundError as e:
print(str(e))
print("Download epsilon from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html")
return None, None, None, None
X_train, Y_train = datasets.load_svmlight_file(train_path)
X_test, Y_test = datasets.load_svmlight_file(test_path)
X_train = X_train.toarray()
X_test = X_test.toarray()
return X_train, Y_train, X_test, Y_test
def banking(data_path=home+'/datasets/bank_marketing/banking.csv'):
try:
open(data_path, 'r')
except FileNotFoundError as e:
print(str(e))
print("Download from https://raw.githubusercontent.com/madmashup/targeted-marketing-predictive-engine/master/banking.csv")
return None, None, None, None
data = pd.read_csv(data_path, header=0)
data = data.dropna()
data.drop(data.columns[[0, 3, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19]],
axis=1, inplace=True)
data2 = pd.get_dummies(data, columns =['job', 'marital', 'default',
'housing', 'loan', 'poutcome'])
data2.drop(data2.columns[[12, 16, 18, 21, 24]], axis=1, inplace=True)
X = data2.iloc[:,1:]
y = data2.iloc[:,0]
X_train, X_test, Y_train, Y_test = train_test_split(X, y, random_state=0)
Y_train[Y_train == 0] = -1
Y_test[Y_test == 0] = -1
X_train = X_train.values
Y_train = Y_train.values
X_test = X_test.values
Y_test = Y_test.values
return X_train, Y_train, X_test, Y_test
# normalization makes learning very slow (due to lack of sparsity)
# X_train = preprocessing.normalize(X_train, axis=0, norm='l1')
# X_test = preprocessing.normalize(X_test, axis=0, norm='l1')
return X_train, Y_train, X_test, Y_test
def news20(data_path=home+'/datasets/news20/news20.binary'):
try:
open(data_path, 'r')
except FileNotFoundError as e:
print(str(e))
print("Download news20.binary from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html")
return None, None, None, None
X, Y = datasets.load_svmlight_file(data_path)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25,
random_state=42)
# normalization makes learning very slow (due to lack of sparsity)
s = preprocessing.MaxAbsScaler()
X_train = s.fit_transform(X_train)
X_test = s.transform(X_test)
X_train = preprocessing.normalize(X_train)
X_test = preprocessing.normalize(X_test)
X_train = X_train.toarray()
X_test = X_test.toarray()
return X_train, Y_train, X_test, Y_test
def news20small(data_path=home+'/datasets/news20/news20small'):
try:
open(data_path, 'r')
except FileNotFoundError as e:
print(str(e))
print("Download news20.binary from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html and run: ```head -1300 news20.binary > news20small```")
return None, None, None, None
X, Y = datasets.load_svmlight_file(data_path)
X = X.toarray()
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2,
random_state=42)
s = preprocessing.MaxAbsScaler()
X_train = s.fit_transform(X_train)
X_test = s.transform(X_test)
X_train = preprocessing.normalize(X_train)
X_test = preprocessing.normalize(X_test)
return X_train, Y_train, X_test, Y_test
def linearSample(N=50, variance=100):
X = np.array(range(N)).T + 1
Y = np.array([random.random() * variance + i * 10 + 900 for i in range(len(X))]).T
X = X.reshape(-1,1)
return X, Y, X, Y
def breast_cancer():
data = datasets.load_breast_cancer()
X = data.data
Y = data.target
Y[Y == 0] = -1
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2,
random_state=42)
X_train = preprocessing.scale(X_train)
X_test = preprocessing.scale(X_test)
X_train = preprocessing.normalize(X_train)
X_test = preprocessing.normalize(X_test)
return X_train, Y_train, X_test, Y_test
def diabetes():
diabetes = datasets.load_diabetes()
# Split the data into training/testing sets
X_train = diabetes.data[:-20]
X_test = diabetes.data[-20:]
# Split the targets into training/testing sets
Y_train = diabetes.target[:-20]
Y_test = diabetes.target[-20:]
X_train = preprocessing.scale(X_train)
X_test = preprocessing.scale(X_test)
return X_train, Y_train, X_test, Y_test
def cpusmall(data_path=home+'/datasets/cpusmall/cpusmall'):
try:
open(data_path, 'r')
except FileNotFoundError as e:
print(str(e))
print("Download cpusmall from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html")
return None, None, None, None
X, Y = datasets.load_svmlight_file(data_path)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25,
random_state=42)
X_train = X_train.toarray()
X_test = X_test.toarray()
y_m = np.mean(Y_train)
y_s = np.std(Y_train)
Y_train = (Y_train-y_m)
Y_test = (Y_test-y_m)
s = preprocessing.MaxAbsScaler()
X_train = s.fit_transform(X_train)
X_test = s.transform(X_test)
X_train = preprocessing.normalize(X_train)
X_test = preprocessing.normalize(X_test)
return X_train, Y_train, X_test, Y_test
def abalone(data_path=home+'/datasets/abalone/abalone'):
try:
open(data_path, 'r')
except FileNotFoundError as e:
print(str(e))
print("Download abalone from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html")
return None, None, None, None
X, Y = datasets.load_svmlight_file(data_path)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25,
random_state=42)
X_train = X_train.toarray()
X_test = X_test.toarray()
y_m = np.mean(Y_train)
y_s = np.std(Y_train)
Y_train = (Y_train-y_m)
Y_test = (Y_test-y_m)
s = preprocessing.MaxAbsScaler()
X_train = s.fit_transform(X_train)
X_test = s.transform(X_test)
X_train = preprocessing.normalize(X_train)
X_test = preprocessing.normalize(X_test)
return X_train, Y_train, X_test, Y_test
def cadata(data_path=home+'/datasets/cadata/cadata'):
"""Reported performance:
http://www.jmlr.org/papers/volume18/15-025/15-025.pdf
http://www.stat.cmu.edu/~cshalizi/350/hw/solutions/solutions-06.pdf
"""
try:
open(data_path, 'r')
except FileNotFoundError as e:
print(str(e))
print("Download cadata from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html")
return None, None, None, None
X, Y = datasets.load_svmlight_file(data_path)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25,
random_state=42)
X_train = X_train.toarray()
X_test = X_test.toarray()
y_m = np.mean(Y_train)
y_s = np.std(Y_train)
Y_train = (Y_train-y_m)
Y_test = (Y_test-y_m)
s = preprocessing.MaxAbsScaler()
X_train = s.fit_transform(X_train)
X_test = s.transform(X_test)
X_train = preprocessing.normalize(X_train)
X_test = preprocessing.normalize(X_test)
return X_train, Y_train, X_test, Y_test
def msd(train_path=home+'/datasets/yearPredictionMSD/YearPredictionMSD',
test_path=home+'/datasets/yearPredictionMSD/YearPredictionMSD.t'):
try:
open(train_path, 'r')
open(test_path, 'r')
except FileNotFoundError as e:
print("Dataset not found in: " + home + "/datasets/yearPredictionMSD/")
path = "/tmp/yearPredictionMSD/"
print("Looking for dataset in: " + path)
files = ["YearPredictionMSD.bz2", "YearPredictionMSD.t.bz2"]
if not os.path.exists(path):
os.mkdir(path)
print("Downloading and extracting dataset in: " + path)
url = "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression/"
for f in files:
filepath = path + f
wget.download(url + f, filepath)
print("\nExtracting...")
zipfile = bz2.BZ2File(filepath)
data = zipfile.read()
newfilepath = filepath[:-4]
open(newfilepath, 'wb').write(data)
train_path = path + files[0]
test_path = path + files[0]
print("Dataset is now in: " + path)
X_train, Y_train = datasets.load_svmlight_file(train_path)
X_test, Y_test = datasets.load_svmlight_file(test_path)
X_train = X_train.toarray()
X_test = X_test.toarray()
y_m = np.mean(Y_train)
y_s = np.std(Y_train)
Y_train = (Y_train-y_m)
Y_test = (Y_test-y_m)
s = preprocessing.MaxAbsScaler()
X_train = s.fit_transform(X_train)
X_test = s.transform(X_test)
X_train = preprocessing.normalize(X_train)
X_test = preprocessing.normalize(X_test)
return X_train, Y_train, X_test, Y_test
def E2006(train_path=home+'/datasets/E2006/E2006.train',
test_path=home+'/datasets/E2006/E2006.test'):
"""Download E2006-tfidf from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html
Reported performance:
[Table 6](http://www.kdd.org/kdd2016/papers/files/rpp0242-zhangA.pdf)
"""
try:
open(train_path, 'r')
open(test_path, 'r')
except FileNotFoundError as e:
print(str(e))
print("Download E2006-tfidf from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html")
return None, None, None, None
X_train, Y_train = datasets.load_svmlight_file(train_path)
X_test, Y_test = datasets.load_svmlight_file(test_path)
X_train = X_train.toarray()
X_test = X_test.toarray()
# X_test is missing two columns (all zeros)
z = np.zeros((X_test.shape[0], 2))
X_test = np.append(X_test, z, axis=1)
y_m = np.mean(Y_train)
y_s = np.std(Y_train)
Y_train = (Y_train-y_m)
Y_test = (Y_test-y_m)
s = preprocessing.MaxAbsScaler()
X_train = s.fit_transform(X_train)
X_test = s.transform(X_test)
X_train = preprocessing.normalize(X_train)
X_test = preprocessing.normalize(X_test)
return X_train, Y_train, X_test, Y_test
def E2006small(data_path=home+'/datasets/E2006/E2006.small'):
X, Y = datasets.load_svmlight_file(data_path)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25,
random_state=42)
return X_train.toarray(), Y_train, X_test.toarray(), Y_test
def adult(data_path=home+'/datasets/adult/'):
"""Preprocessing code fetched from
https://github.com/animesh-agarwal/Machine-Learning-Datasets/tree/master/census-data"""
train_data_path = os.path.join(data_path, 'adult.data')
test_data_path = os.path.join(data_path, 'adult.test')
try:
open(train_data_path, 'r')
open(test_data_path, 'r')
except FileNotFoundError as e:
print(str(e))
print("Download `adult.data` and `adult.test` from https://archive.ics.uci.edu/ml/machine-learning-databases/adult/")
return None, None, None, None
columns = ["age", "workClass", "fnlwgt", "education", "education-num",
"marital-status", "occupation", "relationship", "race", "sex",
"capital-gain", "capital-loss", "hours-per-week", "native-country", "income"]
train_data = pd.read_csv(train_data_path, names = columns, sep=' *, *', na_values='?')
test_data = pd.read_csv(test_data_path, names = columns, sep=' *, *', skiprows =1, na_values='?')
num_attributes = train_data.select_dtypes(include=['int'])
cat_attributes = train_data.select_dtypes(include=['object'])
class ColumnsSelector(BaseEstimator, TransformerMixin):
def __init__(self, type):
self.type = type
def fit(self, X, y=None):
return self
def transform(self,X):
return X.select_dtypes(include=[self.type])
class CategoricalImputer(BaseEstimator, TransformerMixin):
def __init__(self, columns = None, strategy='most_frequent'):
self.columns = columns
self.strategy = strategy
def fit(self,X, y=None):
if self.columns is None:
self.columns = X.columns
if self.strategy is 'most_frequent':
self.fill = {column: X[column].value_counts().index[0] for column in self.columns}
else:
self.fill ={column: '0' for column in self.columns}
return self
def transform(self,X):
X_copy = X.copy()
for column in self.columns:
X_copy[column] = X_copy[column].fillna(self.fill[column])
return X_copy
class CategoricalEncoder(BaseEstimator, TransformerMixin):
def __init__(self, dropFirst=True):
self.categories=dict()
self.dropFirst=dropFirst
def fit(self, X, y=None):
join_df = pd.concat([train_data, test_data])
join_df = join_df.select_dtypes(include=['object'])
for column in join_df.columns:
self.categories[column] = join_df[column].value_counts().index.tolist()
return self
def transform(self, X):
X_copy = X.copy()
X_copy = X_copy.select_dtypes(include=['object'])
for column in X_copy.columns:
X_copy[column] = X_copy[column].astype({column: CategoricalDtype(self.categories[column])})
return pd.get_dummies(X_copy, drop_first=self.dropFirst)
num_pipeline = Pipeline(steps=[
("num_attr_selector", ColumnsSelector(type='int')),
("scaler", StandardScaler())
])
cat_pipeline = Pipeline(steps=[
("cat_attr_selector", ColumnsSelector(type='object')),
("cat_imputer", CategoricalImputer(columns=['workClass','occupation', 'native-country'])),
("encoder", CategoricalEncoder(dropFirst=True))
])
full_pipeline = FeatureUnion([("num_pipe", num_pipeline), ("cat_pipeline", cat_pipeline)])
train_data.drop(['fnlwgt', 'education'], axis=1, inplace=True)
test_data.drop(['fnlwgt', 'education'], axis=1, inplace=True)
train_copy = train_data.copy()
# convert the income column to 0 or 1 and then drop the column for the feature vectors
train_copy["income"] = train_copy["income"].apply(lambda x:0 if x=='<=50K' else 1)
X_train = train_copy.drop('income', axis =1)
Y_train = train_copy['income']
X_train = full_pipeline.fit_transform(X_train)
test_copy = test_data.copy()
# convert the income column to 0 or 1
test_copy["income"] = test_copy["income"].apply(lambda x:0 if x=='<=50K.' else 1)
# separating the feature vecotrs and the target values
X_test = test_copy.drop('income', axis =1)
Y_test = test_copy['income']
# preprocess the test data using the full pipeline
# here we set the type_df param to 'test'
X_test = full_pipeline.fit_transform(X_test)
s = preprocessing.MaxAbsScaler()
X_train = s.fit_transform(X_train)
X_test = s.transform(X_test)
X_train = preprocessing.normalize(X_train)
X_test = preprocessing.normalize(X_test)
Y_train = Y_train.to_numpy()
Y_test = Y_test.to_numpy()
Y_train[Y_train == 0] = -1
Y_test[Y_test == 0] = -1
return X_train, Y_train, X_test, Y_test