-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy path4_predict.py
139 lines (106 loc) · 4.76 KB
/
4_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import numpy as np
from light_training.dataloading.dataset import get_train_val_test_loader_from_train
import torch
import torch.nn as nn
from monai.inferers import SlidingWindowInferer
from light_training.evaluation.metric import dice
from light_training.trainer import Trainer
from monai.utils import set_determinism
from light_training.evaluation.metric import dice
set_determinism(123)
import os
from light_training.prediction import Predictor
data_dir = "./data/fullres/train"
env = "pytorch"
max_epoch = 1000
batch_size = 2
val_every = 2
num_gpus = 1
device = "cuda:0"
patch_size = [128, 128, 128]
class BraTSTrainer(Trainer):
def __init__(self, env_type, max_epochs, batch_size, device="cpu", val_every=1, num_gpus=1, logdir="./logs/", master_ip='localhost', master_port=17750, training_script="train.py"):
super().__init__(env_type, max_epochs, batch_size, device, val_every, num_gpus, logdir, master_ip, master_port, training_script)
self.patch_size = patch_size
self.augmentation = False
def convert_labels(self, labels):
## TC, WT and ET
result = [(labels == 1) | (labels == 3), (labels == 1) | (labels == 3) | (labels == 2), labels == 3]
return torch.cat(result, dim=1).float()
def get_input(self, batch):
image = batch["data"]
label = batch["seg"]
properties = batch["properties"]
label = self.convert_labels(label)
return image, label, properties
def define_model_segmamba(self):
from model_segmamba.segmamba import SegMamba
model = SegMamba(in_chans=4,
out_chans=4,
depths=[2,2,2,2],
feat_size=[48, 96, 192, 384])
model_path = "/home/xingzhaohu/dev/jiuding_code/brats23/logs/segmamba/model/final_model_0.9038.pt"
new_sd = self.filte_state_dict(torch.load(model_path, map_location="cpu"))
model.load_state_dict(new_sd)
model.eval()
window_infer = SlidingWindowInferer(roi_size=patch_size,
sw_batch_size=2,
overlap=0.5,
progress=True,
mode="gaussian")
predictor = Predictor(window_infer=window_infer,
mirror_axes=[0,1,2])
save_path = "./prediction_results/segmamba"
os.makedirs(save_path, exist_ok=True)
return model, predictor, save_path
def validation_step(self, batch):
image, label, properties = self.get_input(batch)
ddim = False
model, predictor, save_path = self.define_model_segmamba()
model_output = predictor.maybe_mirror_and_predict(image, model, device=device)
model_output = predictor.predict_raw_probability(model_output,
properties=properties)
model_output = model_output.argmax(dim=0)[None]
model_output = self.convert_labels_dim0(model_output)
label = label[0]
c = 3
dices = []
for i in range(0, c):
output_i = model_output[i].cpu().numpy()
label_i = label[i].cpu().numpy()
d = dice(output_i, label_i)
dices.append(d)
print(dices)
model_output = predictor.predict_noncrop_probability(model_output, properties)
predictor.save_to_nii(model_output,
raw_spacing=[1,1,1],
case_name = properties['name'][0],
save_dir=save_path)
return 0
def convert_labels_dim0(self, labels):
## TC, WT and ET
result = [(labels == 1) | (labels == 3), (labels == 1) | (labels == 3) | (labels == 2), labels == 3]
return torch.cat(result, dim=0).float()
def filte_state_dict(self, sd):
if "module" in sd :
sd = sd["module"]
new_sd = {}
for k, v in sd.items():
k = str(k)
new_k = k[7:] if k.startswith("module") else k
new_sd[new_k] = v
del sd
return new_sd
if __name__ == "__main__":
trainer = BraTSTrainer(env_type=env,
max_epochs=max_epoch,
batch_size=batch_size,
device=device,
logdir="",
val_every=val_every,
num_gpus=num_gpus,
master_port=17751,
training_script=__file__)
train_ds, val_ds, test_ds = get_train_val_test_loader_from_train(data_dir)
trainer.validation_single_gpu(test_ds)
# print(f"result is {v_mean}")