forked from yburda/iwae
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnnet.py
93 lines (69 loc) · 2.7 KB
/
nnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
'''Classes used for describing and creating neural networks'''
import theano
import theano.tensor as T
import numpy as np
floatX = theano.config.floatX
class Linear():
def __init__(self, W, b):
self.W = theano.shared(value=W.astype(floatX), name='W')
self.b = theano.shared(value=b.astype(floatX), name='b', broadcastable=(True, False))
self.params = [self.W, self.b]
def yIx(self, x, **kwargs):
return x.dot(self.W) + self.b
def first_linear_layer_weights_np(self):
return self.W.get_value(borrow=False)
def last_linear_layer_weights_np(self):
return self.W.get_value(borrow=False)
@staticmethod
def random(n_in, n_out, factor=1., seed=123):
'''A randomly initialized linear layer.
When factor is 1, the initialization is uniform as in Glorot, Bengio, 2010,
assuming the layer is intended to be followed by the tanh nonlinearity.'''
random_state = np.random.RandomState(seed)
scale = factor*np.sqrt(6./(n_in+n_out))
return Linear(W=random_state.uniform(low=-scale,
high=scale,
size=(n_in, n_out)),
b=np.zeros((1, n_out)))
class Tanh():
def __init__(self):
self.params = []
def yIx(self, x, **kwargs):
return T.tanh(x)
class Sigmoid():
def __init__(self):
self.params = []
def yIx(self, x, **kwargs):
return T.nnet.sigmoid(x)
class Exponential():
def __init__(self):
self.params = []
def yIx(self, x, **kwargs):
return T.exp(x)
class NNet():
def __init__(self):
self.params = []
self.layers = []
def add_layer(self, layer):
self.layers.append(layer)
self.params += layer.params
return self
def yIx(self, x, **kwargs):
'''Returns the output of the last layer of the network'''
y = 1 * x
for layer in self.layers:
y = layer.yIx(y, **kwargs)
return y
def first_linear_layer_weights_np(self):
first_linear_layer = next(layer for layer in self.layers if isinstance(layer, Linear))
return first_linear_layer.W.get_value(borrow=False)
def last_linear_layer_weights_np(self):
last_linear_layer = [layer for layer in self.layers if isinstance(layer, Linear)][-1]
return last_linear_layer.W.get_value(borrow=False)
def random_linear_then_tanh_chain(n_units):
'''Returns a neural network consisting of alternating Linear and Tanh layers.'''
model = NNet()
for n_in, n_out in zip(n_units, n_units[1:]):
model.add_layer(Linear.random(n_in, n_out))
model.add_layer(Tanh())
return model