-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtf_ms_loss.py
51 lines (37 loc) · 2.01 KB
/
tf_ms_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
import sys
import numpy as np
import tensorflow as tf
def ms_loss(labels, embeddings, alpha=2.0, beta=50.0, lamb=1.0, eps=0.1, ms_mining=False):
'''
ref: http://openaccess.thecvf.com/content_CVPR_2019/papers/Wang_Multi-Similarity_Loss_With_General_Pair_Weighting_for_Deep_Metric_Learning_CVPR_2019_paper.pdf
official codes: https://github.com/MalongTech/research-ms-loss
'''
# make sure emebedding should be l2-normalized
embeddings = tf.nn.l2_normalize(embeddings, axis=1)
labels = tf.reshape(labels, [-1, 1])
batch_size = embeddings.get_shape().as_list()[0]
adjacency = tf.equal(labels, tf.transpose(labels))
adjacency_not = tf.logical_not(adjacency)
mask_pos = tf.cast(adjacency, dtype=tf.float32) - tf.eye(batch_size, dtype=tf.float32)
mask_neg = tf.cast(adjacency_not, dtype=tf.float32)
sim_mat = tf.matmul(embeddings, embeddings, transpose_a=False, transpose_b=True)
sim_mat = tf.maximum(sim_mat, 0.0)
pos_mat = tf.multiply(sim_mat, mask_pos)
neg_mat = tf.multiply(sim_mat, mask_neg)
if ms_mining:
max_val = tf.reduce_max(neg_mat, axis=1, keepdims=True)
tmp_max_val = tf.reduce_max(pos_mat, axis=1, keepdims=True)
min_val = tf.reduce_min(tf.multiply(sim_mat - tmp_max_val, mask_pos), axis=1, keepdims=True) + tmp_max_val
max_val = tf.tile(max_val, [1, batch_size])
min_val = tf.tile(min_val, [1, batch_size])
mask_pos = tf.where(pos_mat < max_val + eps, mask_pos, tf.zeros_like(mask_pos))
mask_neg = tf.where(neg_mat > min_val - eps, mask_neg, tf.zeros_like(mask_neg))
pos_exp = tf.exp(-alpha * (pos_mat - lamb))
pos_exp = tf.where(mask_pos > 0.0, pos_exp, tf.zeros_like(pos_exp))
neg_exp = tf.exp(beta * (neg_mat - lamb))
neg_exp = tf.where(mask_neg > 0.0, neg_exp, tf.zeros_like(neg_exp))
pos_term = tf.log(1.0 + tf.reduce_sum(pos_exp, axis=1)) / alpha
neg_term = tf.log(1.0 + tf.reduce_sum(neg_exp, axis=1)) / beta
loss = tf.reduce_mean(pos_term + neg_term)
return loss