forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolo_r50_fpn_8xb8-lsj-200e_coco.py
71 lines (66 loc) · 2.16 KB
/
solo_r50_fpn_8xb8-lsj-200e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
_base_ = '../common/lsj-200e_coco-instance.py'
image_size = (1024, 1024)
batch_augments = [dict(type='BatchFixedSizePad', size=image_size)]
# model settings
model = dict(
type='SOLO',
data_preprocessor=dict(
type='DetDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_size_divisor=32,
batch_augments=batch_augments),
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'),
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=0,
num_outs=5),
mask_head=dict(
type='SOLOHead',
num_classes=80,
in_channels=256,
stacked_convs=7,
feat_channels=256,
strides=[8, 8, 16, 32, 32],
scale_ranges=((1, 96), (48, 192), (96, 384), (192, 768), (384, 2048)),
pos_scale=0.2,
num_grids=[40, 36, 24, 16, 12],
cls_down_index=0,
loss_mask=dict(type='DiceLoss', use_sigmoid=True, loss_weight=3.0),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)),
# model training and testing settings
test_cfg=dict(
nms_pre=500,
score_thr=0.1,
mask_thr=0.5,
filter_thr=0.05,
kernel='gaussian', # gaussian/linear
sigma=2.0,
max_per_img=100))
train_dataloader = dict(batch_size=8, num_workers=4)
# Enable automatic-mixed-precision training with AmpOptimWrapper.
optim_wrapper = dict(
type='AmpOptimWrapper',
optimizer=dict(
type='SGD', lr=0.01 * 4, momentum=0.9, weight_decay=0.00004),
clip_grad=dict(max_norm=35, norm_type=2))
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (8 GPUs) x (8 samples per GPU)
auto_scale_lr = dict(base_batch_size=64)