-
Notifications
You must be signed in to change notification settings - Fork 110
/
Copy pathlowshot_evaluate.py
100 lines (87 loc) · 4.68 KB
/
lowshot_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
"""Evaluates a fewshot recognition models on the low-shot Imagenet dataset[*]
using the improved evaluation metrics proposed by Wang et al [**].
Example of usage:
# Evaluate the model for the 1-shot the model.
CUDA_VISIBLE_DEVICES=0 python lowshot_evaluate.py --config=imagenet_ResNet10CosineClassifierWeightAttN1 --testset
# Evaluate the model for the 2-shot the model.
CUDA_VISIBLE_DEVICES=0 python lowshot_evaluate.py --config=imagenet_ResNet10CosineClassifierWeightAttN2 --testset
# Evaluate the model for the 5-shot the model.
CUDA_VISIBLE_DEVICES=0 python lowshot_evaluate.py --config=imagenet_ResNet10CosineClassifierWeightAttN5 --testset
# Evaluate the model for the 10-shot the model.
CUDA_VISIBLE_DEVICES=0 python lowshot_evaluate.py --config=imagenet_ResNet10CosineClassifierWeightAttN10 --testset
# Evaluate the model for the 20-shot the model.
CUDA_VISIBLE_DEVICES=0 python lowshot_evaluate.py --config=imagenet_ResNet10CosineClassifierWeightAttN20 --testset
The config argument specifies the model that will be evaluated.
[*] B. Hariharan and R. Girshick. Low-shot visual recognition by shrinking and hallucinating features.
[**] Y.-X. Wang and R. Girshick, M. Hebert, B. Hariharan. Low-shot learning from imaginary data.
"""
from __future__ import print_function
import argparse
import os
import imp
import algorithms as alg
from dataloader import ImageNetLowShotFeatures, LowShotDataloader
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True, default='',
help='config file with parameters of the experiment')
parser.add_argument('--checkpoint', type=int, default=-1,
help='checkpoint (epoch id) that will be loaded. If a negative value is '
'given then the latest existing checkpoint is loaded.')
parser.add_argument('--cuda', type=bool, default=True, help='enables cuda')
parser.add_argument('--testset', default=False, action='store_true',
help='If True, the model is evaluated on the test set of ImageNetLowShot. '
'Otherwise, the validation set is used for evaluation.')
parser.add_argument('--num_exp', type=int, default=100,
help='the number of evaluation experiments that will run before computing '
'the average performance.')
parser.add_argument('--prior', type=float, default=0.8)
args_opt = parser.parse_args()
exp_config_file = os.path.join('.', 'config', args_opt.config + '.py')
exp_directory = os.path.join('.', 'experiments', args_opt.config)
# Load the configuration params of the experiment.
print('Launching experiment: %s' % exp_config_file)
config = imp.load_source("",exp_config_file).config
config['exp_dir'] = exp_directory
print('Loading experiment %s from file: %s' % (args_opt.config, exp_config_file))
print('Generated logs, snapshots, and model files will be stored on %s' %
(config['exp_dir']))
algorithm = alg.ImageNetLowShotExperiments(config)
if args_opt.cuda: # enable cuda.
algorithm.load_to_gpu()
if args_opt.checkpoint != 0: # load checkpoint.
algorithm.load_checkpoint(
epoch=args_opt.checkpoint if (args_opt.checkpoint > 0) else '*',
train=False)
# Prepare the datasets and the the dataloader.
nExemplars = data_train_opt = config['data_train_opt']['nExemplars']
eval_phase = 'test' if args_opt.testset else 'val'
feat_data_train = ImageNetLowShotFeatures(
data_dir=config['data_dir'], image_split='train', phase=eval_phase)
feat_data_test = ImageNetLowShotFeatures(
data_dir=config['data_dir'], image_split='val', phase=eval_phase)
data_loader = LowShotDataloader(
feat_data_train, feat_data_test,
nExemplars=nExemplars, batch_size=26000, num_workers=1)
results = []
# Run args_opt.num_exp different number of evaluation experiments (each time
# sampling a different set of training images for the the novel categories).
for exp_id in range(args_opt.num_exp):
# Sample training data for the novel categories from the training set of
# ImageNet.
# nove_cat_data = dloader.getNovelCategoriesTrainingData(exp_id=exp_id)
nove_cat_data = data_loader.sample_training_data_for_novel_categories(
exp_id=exp_id)
# Feed the training data of the novel categories to the algorithm.
algorithm.add_novel_categories(nove_cat_data)
# Evaluate on the validation images of ImageNet.
results_this = algorithm.evaluate_model_on_test_images(
data_loader=data_loader,
base_classes=data_loader.base_category_label_indices(),
novel_classes=data_loader.novel_category_label_indices(),
exp_id='Exp_id = ' + str(exp_id),
prior_m=args_opt.prior)
results.append(results_this)
# Print the average results.
algorithm.lowshot_avg_results(
results,
exp_id=args_opt.config+' nExemplars = '+str(nExemplars)+' prior = '+str(args_opt.prior))