-
Notifications
You must be signed in to change notification settings - Fork 110
/
Copy pathlowshot_save_features.py
66 lines (52 loc) · 2.58 KB
/
lowshot_save_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
"""Extracts and saves features (with a model trained by the lowshot_train_stage1.py routine) from the
images of the ImageNet dataset.
Example of usage:
# Extract features from the validation image split of the Imagenet.
CUDA_VISIBLE_DEVICES=0 python lowshot_save_features.py --config=imagenet_ResNet10CosineClassifier --split=val
# Extract features from the training image split of the Imagenet.
CUDA_VISIBLE_DEVICES=0 python lowshot_save_features.py --config=imagenet_ResNet10CosineClassifier --split=train
The config argument specifies the model that will be used.
"""
from __future__ import print_function
import argparse
import os
import imp
import algorithms as alg
from dataloader import ImageNet, SimpleDataloader
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True, default='',
help='config file with hyper-parameters of the model that we will use for '
'extracting features from ImageNet dataset.')
parser.add_argument('--checkpoint', type=int, default=-1,
help='checkpoint (epoch id) that will be loaded. If a negative value is'
' given then the latest existing checkpoint is loaded.')
parser.add_argument('--cuda', type=bool, default=True, help='enables cuda')
parser.add_argument('--split', type=str, default='val')
args_opt = parser.parse_args()
exp_config_file = os.path.join('.', 'config', args_opt.config + '.py')
exp_directory = os.path.join('.', 'experiments',args_opt.config)
# Load the configuration params of the experiment
print('Launching experiment: %s' % exp_config_file)
config = imp.load_source("",exp_config_file).config
config['exp_dir'] = exp_directory
print("Loading experiment %s from file: %s" %
(args_opt.config, exp_config_file))
print("Generated logs, snapshots, and config files will be stored on %s" %
(config['exp_dir']))
if (args_opt.split != 'train') and (args_opt.split != 'val'):
raise ValueError('Not valid split {0}'.format(args_opt.split))
dataset = ImageNet(split=args_opt.split)
dloader = SimpleDataloader(dataset, batch_size=256)
algorithm = alg.ImageNetLowShotExperiments(config)
if args_opt.cuda: # enable cuda
algorithm.load_to_gpu()
if args_opt.checkpoint != 0: # load checkpoint
algorithm.load_checkpoint(
epoch=args_opt.checkpoint if (args_opt.checkpoint > 0) else '*',
train=False)
dst_directory = os.path.join('.', 'data', 'IMAGENET', args_opt.config)
if (not os.path.isdir(dst_directory)):
os.makedirs(dst_directory)
dst_filename = os.path.join(
dst_directory, 'feature_dataset_' + args_opt.split + '.json')
algorithm.save_features(dloader, dst_filename)