-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathman.1
50 lines (45 loc) · 1.39 KB
/
man.1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
.TH gibbsDPA5data
.SH NAME
BINE \- Bayesian Inference of Neuronal Ensembles
.SH SYNOPSIS
.B gibbsDPA5data
[\fB\-\-file\fR \fIFILE\fR]
[\fB\-\-niter\fR \fIITERATIONS\fR]...
.SH DESCRIPTION
Implementation of the Bayesian inference method for detecting neuronal ensembles developed by G. Diana, T. Sainsbury and M. Meyer (see https://doi.org/10.1101/452557 for details).
The input is a text file containing a binary matrix representing the binary activity of recorded neurons arrranged by rows.
.SH OPTIONS
.TP
.BR \-\-niter =\fIITERATIONS\fR
Set the number of Markov Chain iteration.
number of iterations of the Markov Chain
.TP
.BR \-\-trim=\fIVALUE\fR
number of MCMC steps between recorded samples. Default 1.
.TP
.BR \-\-burn_in=\fIVALUE\fR
number of initial MCMC steps excluded
.TP
.BR \-\-assemblies=\fIVALUE\fR
itial number of assemblies
.TP
.BR \-\-seed=\fIVALUE\fR
random seed
.TP
.BR \-\-file=\fIFILE\fR
input file in matrix format [neurons]x[times] where row \fIi\fR represents the binary activity of neuron \fIi\fR.
.TP
.BR \-\-min_neur=\fIVALUE\fR
minimum number of synchronously active neurons. Default 0.
.TP
.BR \-\-min_act=\fIVALUE\fR
minimum neuronal activity (row sums). Default 0.
.TP
.BR \-\-folder=\fIFOLDER\fR
output folder - being created if not already existing
.TP
.BR \-\-continue
uses data from previous run stored in \fIFOLDER\fR
.TP
.BR \-\-verbose
show details of the Markov Chain.