-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathatom_paper.py
94 lines (77 loc) · 4.99 KB
/
atom_paper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import torch.nn as nn
import torch.optim as optim
from ltr.dataset import Lasot, TrackingNet, MSCOCOSeq
from ltr.data import processing, sampler, LTRLoader
import ltr.models.bbreg.atom as atom_models
from ltr import actors
from ltr.trainers import LTRTrainer
import ltr.data.transforms as tfm
def run(settings):
# Most common settings are assigned in the settings struct
settings.description = 'ATOM IoUNet with default settings according to the paper.'
settings.batch_size = 64
settings.num_workers = 8
settings.print_interval = 1
settings.normalize_mean = [0.485, 0.456, 0.406]
settings.normalize_std = [0.229, 0.224, 0.225]
settings.search_area_factor = 5.0
settings.feature_sz = 18
settings.output_sz = settings.feature_sz * 16
settings.center_jitter_factor = {'train': 0, 'test': 4.5}
settings.scale_jitter_factor = {'train': 0, 'test': 0.5}
# Train datasets
lasot_train = Lasot(settings.env.lasot_dir, split='train')
trackingnet_train = TrackingNet(settings.env.trackingnet_dir, set_ids=list(range(11)))
coco_train = MSCOCOSeq(settings.env.coco_dir)
# Validation datasets
trackingnet_val = TrackingNet(settings.env.trackingnet_dir, set_ids=list(range(11,12)))
# The joint augmentation transform, that is applied to the pairs jointly
transform_joint = tfm.Transform(tfm.ToGrayscale(probability=0.05))
# The augmentation transform applied to the training set (individually to each image in the pair)
transform_train = tfm.Transform(tfm.ToTensorAndJitter(0.2),
tfm.Normalize(mean=settings.normalize_mean, std=settings.normalize_std))
# The augmentation transform applied to the validation set (individually to each image in the pair)
transform_val = tfm.Transform(tfm.ToTensor(),
tfm.Normalize(mean=settings.normalize_mean, std=settings.normalize_std))
# Data processing to do on the training pairs
proposal_params = {'min_iou': 0.1, 'boxes_per_frame': 16, 'sigma_factor': [0.01, 0.05, 0.1, 0.2, 0.3]}
data_processing_train = processing.ATOMProcessing(search_area_factor=settings.search_area_factor,
output_sz=settings.output_sz,
center_jitter_factor=settings.center_jitter_factor,
scale_jitter_factor=settings.scale_jitter_factor,
mode='sequence',
proposal_params=proposal_params,
transform=transform_train,
joint_transform=transform_joint)
# Data processing to do on the validation pairs
data_processing_val = processing.ATOMProcessing(search_area_factor=settings.search_area_factor,
output_sz=settings.output_sz,
center_jitter_factor=settings.center_jitter_factor,
scale_jitter_factor=settings.scale_jitter_factor,
mode='sequence',
proposal_params=proposal_params,
transform=transform_val,
joint_transform=transform_joint)
# The sampler for training
dataset_train = sampler.ATOMSampler([lasot_train, trackingnet_train, coco_train], [1,1,1],
samples_per_epoch=1000*settings.batch_size, max_gap=50, processing=data_processing_train)
# The loader for training
loader_train = LTRLoader('train', dataset_train, training=True, batch_size=settings.batch_size, num_workers=settings.num_workers,
shuffle=True, drop_last=True, stack_dim=1)
# The sampler for validation
dataset_val = sampler.ATOMSampler([trackingnet_val], [1], samples_per_epoch=500*settings.batch_size, max_gap=50,
processing=data_processing_val)
# The loader for validation
loader_val = LTRLoader('val', dataset_val, training=False, batch_size=settings.batch_size, num_workers=settings.num_workers,
shuffle=False, drop_last=True, epoch_interval=5, stack_dim=1)
# Create network and actor
net = atom_models.atom_resnet18(backbone_pretrained=True)
objective = nn.MSELoss()
actor = actors.AtomActor(net=net, objective=objective)
# Optimizer
optimizer = optim.Adam(actor.net.bb_regressor.parameters(), lr=1e-3)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=15, gamma=0.2)
# Create trainer
trainer = LTRTrainer(actor, [loader_train, loader_val], optimizer, settings, lr_scheduler)
# Run training (set fail_safe=False if you are debugging)
trainer.train(50, load_latest=True, fail_safe=True)