[2018,DSO-NAS] You Only Search Once: Single Shot Neural Architecture Search via Direct Sparse Optimization.PDF
Auto is the new black — Google AutoML, Microsoft Automated ML, AutoKeras and auto-sklearn
1、澳大利亚欧缇莫的大学
Auto-ReID: Searching for a Part-aware ConvNet for Person Re-Identification PDF
2、清华大学和旷视科技提出,基于MobileNet V1/V2 网络的自动化通道剪枝,相比AMC和NetAdapt有提升
MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning PDF
3、中科院自动化所和旷视联合提出,Object Detection with FPN on COCO优于ResNet101,但是FLOPs比ResNet50低。基于ShuffleNetV2的架构也有较好的表现。
DetNAS: Neural Architecture Search on Object Detection PDF
3、facebook开源框架,基于MCTS和DNN,解决分类,目标检测,风格迁移,图像描述4个任务。
AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search PDF
4、伊利诺伊大学厄巴纳-香槟分校提出的以及channel select算法,论文对mobilenetv1/2 MNasNet 性能提高,推断延迟降低。
Network Slimming by Slimmable Networks:Towards One-Shot Architecture Search for Channel Numbers. PDF
NAS一般是依据人类设计的CNN构造cell,堆叠cell单元。Facebook Ross Girshick,Kaiming He等设计一个基于图论的网络生成器生成随机网络。 实验效果在RandWire-WS数据集,RandWire-WS相比MobileNet v2,Amoeba-C没有太大提升,在COCO目标检测数据集相比ResNeXt-50和ResNeXt-101, 在FLOPs计算量相同情况下,最高有1.7%的提升。为保证公平,论文的随机网络生成器只迭代250 epoch,如果迭代更高的epoch是不是可以生成准确率更高 计算更快的网络模型?
1、Exploring Randomly Wired Neural Networks for Image Recognition.pdf