forked from cuixiaopi/NNR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MIND_dataset.py
225 lines (214 loc) · 16.5 KB
/
MIND_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from MIND_corpus import MIND_Corpus
import time
from config import Config
import torch.utils.data as data
from numpy.random import randint
from torch.utils.data import DataLoader
class MIND_Train_Dataset(data.Dataset):
def __init__(self, corpus: MIND_Corpus):
self.negative_sample_num = corpus.negative_sample_num
self.news_category = corpus.news_category
self.news_subCategory = corpus.news_subCategory
self.news_title_text = corpus.news_title_text
self.news_title_mask = corpus.news_title_mask
self.news_title_entity = corpus.news_title_entity
self.news_abstract_text = corpus.news_abstract_text
self.news_abstract_mask = corpus.news_abstract_mask
self.news_abstract_entity = corpus.news_abstract_entity
self.user_history_graph = corpus.train_user_history_graph
self.user_history_category_mask = corpus.train_user_history_category_mask
self.user_history_category_indices = corpus.train_user_history_category_indices
self.train_behaviors = corpus.train_behaviors
self.train_samples = [[0 for _ in range(1 + self.negative_sample_num)] for __ in range(len(self.train_behaviors))]
self.num = len(self.train_behaviors)
def negative_sampling(self, rank=None):
print('\n%sBegin negative sampling, training sample num : %d' % ('' if rank is None else ('rank ' + str(rank) + ' : '), self.num))
start_time = time.time()
for i, train_behavior in enumerate(self.train_behaviors):
self.train_samples[i][0] = train_behavior[3]
negative_samples = train_behavior[4]
news_num = len(negative_samples)
if news_num <= self.negative_sample_num:
for j in range(self.negative_sample_num):
self.train_samples[i][j + 1] = negative_samples[j % news_num]
else:
used_negative_samples = set()
for j in range(self.negative_sample_num):
while True:
k = randint(0, news_num)
if k not in used_negative_samples:
self.train_samples[i][j + 1] = negative_samples[k]
used_negative_samples.add(k)
break
end_time = time.time()
print('%sEnd negative sampling, used time : %.3fs' % ('' if rank is None else ('rank ' + str(rank) + ' : '), end_time - start_time))
# user_ID : [1]
# user_category : [max_history_num]
# usre_subCategory : [max_history_num]
# user_title_text : [max_history_num, max_title_length]
# user_title_mask : [max_history_num, max_title_length]
# user_title_entity : [max_history_num, max_title_length]
# user_abstract_text : [max_history_num, max_abstract_length]
# user_abstract_mask : [max_history_num, max_abstract_length]
# user_abstract_entity : [max_history_num, max_abstract_length]
# user_history_mask : [max_history_num]
# user_history_graph : [max_history_num, max_history_num]
# user_history_category_mask : [category_num + 1]
# user_history_category_indices : [max_history_num]
# news_category : [1 + negative_sample_num]
# news_subCategory : [1 + negative_sample_num]
# news_title_text : [1 + negative_sample_num, max_title_length]
# news_title_mask : [1 + negative_sample_num, max_title_length]
# news_title_entity : [1 + negative_sample_num, max_title_length]
# news_abstract_text : [1 + negative_sample_num, max_abstract_length]
# news_abstract_mask : [1 + negative_sample_num, max_abstract_length]
# news_abstract_entity : [1 + negative_sample_num, max_abstract_length]
def __getitem__(self, index):
train_behavior = self.train_behaviors[index]
history_index = train_behavior[1]
sample_index = self.train_samples[index]
behavior_index = train_behavior[5]
return train_behavior[0], self.news_category[history_index], self.news_subCategory[history_index], self.news_title_text[history_index], self.news_title_mask[history_index], self.news_title_entity[history_index], self.news_abstract_text[history_index], self.news_abstract_mask[history_index], self.news_abstract_entity[history_index], train_behavior[2], self.user_history_graph[behavior_index], self.user_history_category_mask[behavior_index], self.user_history_category_indices[behavior_index], \
self.news_category[sample_index], self.news_subCategory[sample_index], self.news_title_text[sample_index], self.news_title_mask[sample_index], self.news_title_entity[sample_index], self.news_abstract_text[sample_index], self.news_abstract_mask[sample_index], self.news_abstract_entity[sample_index]
def __len__(self):
return self.num
class MIND_DevTest_Dataset(data.Dataset):
def __init__(self, corpus: MIND_Corpus, mode: str):
assert mode in ['dev', 'test'], 'mode must be chosen from \'dev\' or \'test\''
self.news_category = corpus.news_category
self.news_subCategory = corpus.news_subCategory
self.news_title_text = corpus.news_title_text
self.news_title_mask = corpus.news_title_mask
self.news_title_entity = corpus.news_title_entity
self.news_abstract_text = corpus.news_abstract_text
self.news_abstract_mask = corpus.news_abstract_mask
self.news_abstract_entity = corpus.news_abstract_entity
self.user_history_graph = corpus.dev_user_history_graph if mode == 'dev' else corpus.test_user_history_graph
self.user_history_category_mask = corpus.dev_user_history_category_mask if mode == 'dev' else corpus.test_user_history_category_mask
self.user_history_category_indices = corpus.dev_user_history_category_indices if mode == 'dev' else corpus.test_user_history_category_indices
self.behaviors = corpus.dev_behaviors if mode == 'dev' else corpus.test_behaviors
self.num = len(self.behaviors)
# user_ID : [1]
# user_category : [max_history_num]
# user_subCategory : [max_history_num]
# user_title_text : [max_history_num, max_title_length]
# user_title_mask : [max_history_num, max_title_length]
# user_title_entity : [max_history_num, max_title_length]
# user_abstract_text : [max_history_num, max_abstract_length]
# user_abstract_mask : [max_history_num, max_abstract_length]
# user_abstract_entity : [max_history_num, max_abstract_length]
# user_history_mask : [max_history_num]
# user_history_graph : [max_history_num, max_history_num]
# user_history_category_mask : [category_num + 1]
# user_history_category_indices : [max_history_num]
# candidate_news_category : [1]
# candidate_news_subCategory : [1]
# candidate_news_title_text : [max_title_length]
# candidate_news_title_mask : [max_title_length]
# candidate_news_title_entity : [max_title_lenght]
# candidate_news_abstract_text : [max_abstract_length]
# candidate_news_abstract_mask : [max_abstract_length]
# candidate_news_abstract_entity : [max_abstract_length]
def __getitem__(self, index):
behavior = self.behaviors[index]
history_index = behavior[1]
candidate_news_index = behavior[3]
behavior_index = behavior[4]
return behavior[0], self.news_category[history_index], self.news_subCategory[history_index], self.news_title_text[history_index], self.news_title_mask[history_index], self.news_title_entity[history_index], self.news_abstract_text[history_index], self.news_abstract_mask[history_index], self.news_abstract_entity[history_index], behavior[2], self.user_history_graph[behavior_index], self.user_history_category_mask[behavior_index], self.user_history_category_indices[behavior_index], \
self.news_category[candidate_news_index], self.news_subCategory[candidate_news_index], self.news_title_text[candidate_news_index], self.news_title_mask[candidate_news_index], self.news_title_entity[candidate_news_index], self.news_abstract_text[candidate_news_index], self.news_abstract_mask[candidate_news_index], self.news_abstract_entity[candidate_news_index]
def __len__(self):
return self.num
if __name__ == '__main__':
start_time = time.time()
config = Config()
mind_corpus = MIND_Corpus(config)
print('user_num :', len(mind_corpus.user_ID_dict))
print('news_num :', len(mind_corpus.news_title_text))
print('average title word num :', mind_corpus.title_word_num / mind_corpus.news_num)
print('average abstract word num :', mind_corpus.abstract_word_num / mind_corpus.news_num)
mind_train_dataset = MIND_Train_Dataset(mind_corpus)
mind_dev_dataset = MIND_DevTest_Dataset(mind_corpus, 'dev')
mind_test_dataset = MIND_DevTest_Dataset(mind_corpus, 'test')
mind_train_dataset.negative_sampling()
end_time = time.time()
print('load time : %.3fs' % (end_time - start_time))
print('MIND_Train_Dataset :', len(mind_train_dataset))
train_dataloader = DataLoader(mind_train_dataset, batch_size=config.batch_size, shuffle=True, num_workers=config.batch_size // 16)
for (user_ID, user_category, user_subCategory, user_title_text, user_title_mask, user_title_entity, user_abstract_text, user_abstract_mask, user_abstract_entity, user_history_mask, user_history_graph, user_history_category_mask, user_history_category_indices, \
news_category, news_subCategory, news_title_text, news_title_mask, news_title_entity, news_abstract_text, news_abstract_mask, news_abstract_entity) in train_dataloader:
print('user_ID', user_ID.size(), user_ID.dtype)
print('user_category', user_category.size(), user_category.dtype)
print('user_subCategory', user_subCategory.size(), user_subCategory.dtype)
print('user_title_text', user_title_text.size(), user_title_text.dtype)
print('user_title_mask', user_title_mask.size(), user_title_mask.dtype)
print('user_title_entity', user_title_entity.size(), user_title_entity.dtype)
print('user_abstract_text', user_abstract_text.size(), user_abstract_text.dtype)
print('user_abstract_mask', user_abstract_mask.size(), user_abstract_mask.dtype)
print('user_abstract_entity', user_abstract_entity.size(), user_abstract_entity.dtype)
print('user_history_mask', user_history_mask.size(), user_history_mask.dtype)
print('user_history_graph', user_history_graph.size(), user_history_graph.dtype)
print('user_history_category_mask', user_history_category_mask.size(), user_history_category_mask.dtype)
print('user_history_category_indices', user_history_category_indices.size(), user_history_category_indices.dtype)
print('news_category', news_category.size(), news_category.dtype)
print('news_subCategory', news_subCategory.size(), news_subCategory.dtype)
print('news_title_text', news_title_text.size(), news_title_text.dtype)
print('news_title_mask', news_title_mask.size(), news_title_mask.dtype)
print('news_title_entity', news_title_entity.size(), news_title_entity.dtype)
print('news_abstract_text', news_abstract_text.size(), news_abstract_text.dtype)
print('news_abstract_mask', news_abstract_mask.size(), news_abstract_mask.dtype)
print('news_abstract_entity', news_abstract_entity.size(), news_abstract_entity.dtype)
break
print('MIND_Dev_Dataset :', len(mind_dev_dataset))
dev_dataloader = DataLoader(mind_dev_dataset, batch_size=config.batch_size, shuffle=False, num_workers=config.batch_size // 16)
for (user_ID, user_category, user_subCategory, user_title_text, user_title_mask, user_title_entity, user_abstract_text, user_abstract_mask, user_abstract_entity, user_history_mask, user_history_graph, user_history_category_mask, user_history_category_indices, \
news_category, news_subCategory, news_title_text, news_title_mask, news_title_entity, news_abstract_text, news_abstract_mask, news_abstract_entity) in dev_dataloader:
print('user_ID', user_ID.size(), user_ID.dtype)
print('user_category', user_category.size(), user_category.dtype)
print('user_subCategory', user_subCategory.size(), user_subCategory.dtype)
print('user_title_text', user_title_text.size(), user_title_text.dtype)
print('user_title_mask', user_title_mask.size(), user_title_mask.dtype)
print('user_title_entity', user_title_entity.size(), user_title_entity.dtype)
print('user_abstract_text', user_abstract_text.size(), user_abstract_text.dtype)
print('user_abstract_mask', user_abstract_mask.size(), user_abstract_mask.dtype)
print('user_abstract_entity', user_abstract_entity.size(), user_abstract_entity.dtype)
print('user_history_mask', user_history_mask.size(), user_history_mask.dtype)
print('user_history_graph', user_history_graph.size(), user_history_graph.dtype)
print('user_history_category_mask', user_history_category_mask.size(), user_history_category_mask.dtype)
print('user_history_category_indices', user_history_category_indices.size(), user_history_category_indices.dtype)
print('news_category', news_category.size(), news_category.dtype)
print('news_subCategory', news_subCategory.size(), news_subCategory.dtype)
print('news_title_text', news_title_text.size(), news_title_text.dtype)
print('news_title_mask', news_title_mask.size(), news_title_mask.dtype)
print('news_title_entity', news_title_entity.size(), news_title_entity.dtype)
print('news_abstract_text', news_abstract_text.size(), news_abstract_text.dtype)
print('news_abstract_mask', news_abstract_mask.size(), news_abstract_mask.dtype)
print('news_abstract_entity', news_abstract_entity.size(), news_abstract_entity.dtype)
break
print(len(mind_corpus.dev_indices))
print('MIND_Test_Dataset :', len(mind_test_dataset))
test_dataloader = DataLoader(mind_test_dataset, batch_size=config.batch_size, shuffle=False, num_workers=config.batch_size // 16)
for (user_ID, user_category, user_subCategory, user_title_text, user_title_mask, user_title_entity, user_abstract_text, user_abstract_mask, user_abstract_entity, user_history_mask, user_history_graph, user_history_category_mask, user_history_category_indices, \
news_category, news_subCategory, news_title_text, news_title_mask, news_title_entity, news_abstract_text, news_abstract_mask, news_abstract_entity) in test_dataloader:
print('user_ID', user_ID.size(), user_ID.dtype)
print('user_category', user_category.size(), user_category.dtype)
print('user_subCategory', user_subCategory.size(), user_subCategory.dtype)
print('user_title_text', user_title_text.size(), user_title_text.dtype)
print('user_title_mask', user_title_mask.size(), user_title_mask.dtype)
print('user_title_entity', user_title_entity.size(), user_title_entity.dtype)
print('user_abstract_text', user_abstract_text.size(), user_abstract_text.dtype)
print('user_abstract_mask', user_abstract_mask.size(), user_abstract_mask.dtype)
print('user_abstract_entity', user_abstract_entity.size(), user_abstract_entity.dtype)
print('user_history_mask', user_history_mask.size(), user_history_mask.dtype)
print('user_history_graph', user_history_graph.size(), user_history_graph.dtype)
print('user_history_category_mask', user_history_category_mask.size(), user_history_category_mask.dtype)
print('user_history_category_indices', user_history_category_indices.size(), user_history_category_indices.dtype)
print('news_category', news_category.size(), news_category.dtype)
print('news_subCategory', news_subCategory.size(), news_subCategory.dtype)
print('news_title_text', news_title_text.size(), news_title_text.dtype)
print('news_title_mask', news_title_mask.size(), news_title_mask.dtype)
print('news_title_entity', news_title_entity.size(), news_title_entity.dtype)
print('news_abstract_text', news_abstract_text.size(), news_abstract_text.dtype)
print('news_abstract_mask', news_abstract_mask.size(), news_abstract_mask.dtype)
print('news_abstract_entity', news_abstract_entity.size(), news_abstract_entity.dtype)
break
print(len(mind_corpus.test_indices))