forked from cuixiaopi/NNR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_statistic.py
245 lines (236 loc) · 13.4 KB
/
data_statistic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import collections
import re
pat = re.compile(r"[\w]+|[.,!?;|]")
# MIND tokenizer
def word_tokenize(s):
return pat.findall(s.lower())
def news_statistic(train_root, dev_root):
news_dict = {}
word_counter = collections.Counter()
train_cnt, train_max_title_len, train_title_len, train_max_content_len, train_content_len = 0, 0, 0, 0, 0
dev_cnt, dev_max_title_len, dev_title_len, dev_max_content_len, dev_content_len = 0, 0, 0, 0, 0
title_lens, content_lens = {}, {}
train_title_length_counter = [0 for _ in range(128)]
train_content_length_counter = [0 for _ in range(640)]
dev_title_length_counter = [0 for _ in range(128)]
dev_content_length_counter = [0 for _ in range(640)]
with open(os.path.join(train_root, 'news.tsv'), 'r', encoding='utf-8') as train_news_file:
for line in train_news_file:
news_ID, category, subCategory, title, content, url, title_entities, content_entities = line.split('\t')
title = list(map(lambda word: word.lower(), word_tokenize(title)))
content = list(map(lambda word: word.lower(), word_tokenize(content)))
for word in title:
word_counter[word] += 1
for word in content:
word_counter[word] += 1
if news_ID not in news_dict:
news_dict[news_ID] = len(news_dict)
train_max_title_len = max(len(title), train_max_title_len)
train_title_len += len(title)
title_lens[news_ID] = len(title)
train_max_content_len = max(len(content), train_max_content_len)
train_content_len += len(content)
content_lens[news_ID] = len(content)
train_title_length_counter[len(title)] += 1
train_content_length_counter[len(content)] += 1
train_cnt += 1
with open(os.path.join(dev_root, 'news.tsv'), 'r', encoding='utf-8') as dev_news_file:
for line in dev_news_file:
news_ID, category, subCategory, title, content, url, title_entities, content_entities = line.split('\t')
title = list(map(lambda word: word.lower(), word_tokenize(title)))
content = list(map(lambda word: word.lower(), word_tokenize(content)))
for word in title:
word_counter[word] += 1
for word in content:
word_counter[word] += 1
if news_ID not in news_dict:
news_dict[news_ID] = len(news_dict)
dev_max_title_len = max(len(title), dev_max_title_len)
dev_title_len += len(title)
title_lens[news_ID] = len(title)
dev_max_content_len = max(len(content), dev_max_content_len)
dev_content_len += len(content)
content_lens[news_ID] = len(content)
dev_title_length_counter[len(title)] += 1
dev_content_length_counter[len(content)] += 1
dev_cnt += 1
train_title_length_accumulate = [0 for _ in range(128)]
train_content_length_accumulate = [0 for _ in range(640)]
dev_title_length_accumulate = [0 for _ in range(128)]
dev_content_length_accumulate = [0 for _ in range(640)]
train_title_length_accumulate[0] = train_title_length_counter[0]
train_content_length_accumulate[0] = train_content_length_counter[0]
dev_title_length_accumulate[0] = dev_title_length_counter[0]
dev_content_length_accumulate[0] = dev_content_length_counter[0]
for i in range(1, 128):
train_title_length_accumulate[i] = train_title_length_accumulate[i - 1] + train_title_length_counter[i]
dev_title_length_accumulate[i] = dev_title_length_accumulate[i - 1] + dev_title_length_counter[i]
for i in range(1, 640):
train_content_length_accumulate[i] = train_content_length_accumulate[i - 1] + train_content_length_counter[i]
dev_content_length_accumulate[i] = dev_content_length_accumulate[i - 1] + dev_content_length_counter[i]
title_avg_len = 0
for title_len in title_lens.values():
title_avg_len += title_len
title_avg_len /= len(title_lens)
content_avg_len = 0
for content_len in content_lens.values():
content_avg_len += content_len
content_avg_len /= len(content_lens)
print('word num :', len(word_counter))
word_counter_list = [[word, word_counter[word]] for word in word_counter]
word_counter_list.sort(key=lambda x: x[1], reverse=True)
filtered_word_counter_list = list(filter(lambda x: x[1] >= 3, word_counter_list))
print('filtered word num :', len(filtered_word_counter_list))
print('title average length :', title_avg_len)
print('content average length :', content_avg_len)
print('train num :', train_cnt)
print('train max title length :', train_max_title_len)
print('train average title length : %.3f' % (train_title_len / train_cnt))
print('train max content length :', train_max_content_len)
print('train average content length : %.3f' % (train_content_len / train_cnt))
print('dev num :', dev_cnt)
print('dev max title length :', dev_max_title_len)
print('dev average title length : %.3f' % (dev_title_len / dev_cnt))
print('dev max content length :', dev_max_content_len)
print('dev average content length : %.3f' % (dev_content_len / dev_cnt))
print('train title length <= 8 :', train_title_length_accumulate[8] / train_cnt)
print('train title length <= 16 :', train_title_length_accumulate[16] / train_cnt)
print('train title length <= 24 :', train_title_length_accumulate[24] / train_cnt)
print('train title length <= 32 :', train_title_length_accumulate[32] / train_cnt)
print('train title length <= 48 :', train_title_length_accumulate[48] / train_cnt)
print('train title length <= 64 :', train_title_length_accumulate[64] / train_cnt)
print('train content length <= 16 :', train_content_length_accumulate[16] / train_cnt)
print('train content length <= 32 :', train_content_length_accumulate[32] / train_cnt)
print('train content length <= 48 :', train_content_length_accumulate[48] / train_cnt)
print('train content length <= 64 :', train_content_length_accumulate[64] / train_cnt)
print('train content length <= 96 :', train_content_length_accumulate[96] / train_cnt)
print('train content length <= 128 :', train_content_length_accumulate[128] / train_cnt)
print('train content length <= 256 :', train_content_length_accumulate[256] / train_cnt)
print('train content length <= 512 :', train_content_length_accumulate[512] / train_cnt)
print('dev title length <= 8 :', dev_title_length_accumulate[8] / dev_cnt)
print('dev title length <= 16 :', dev_title_length_accumulate[16] / dev_cnt)
print('dev title length <= 24 :', dev_title_length_accumulate[24] / dev_cnt)
print('dev title length <= 32 :', dev_title_length_accumulate[32] / dev_cnt)
print('dev title length <= 48 :', dev_title_length_accumulate[48] / dev_cnt)
print('dev title length <= 64 :', dev_title_length_accumulate[64] / dev_cnt)
print('dev content length <= 16 :', dev_content_length_accumulate[16] / dev_cnt)
print('dev content length <= 32 :', dev_content_length_accumulate[32] / dev_cnt)
print('dev content length <= 48 :', dev_content_length_accumulate[48] / dev_cnt)
print('dev content length <= 64 :', dev_content_length_accumulate[64] / dev_cnt)
print('dev content length <= 96 :', dev_content_length_accumulate[96] / dev_cnt)
print('dev content length <= 128 :', dev_content_length_accumulate[128] / dev_cnt)
print('dev content length <= 256 :', dev_content_length_accumulate[256] / dev_cnt)
print('dev content length <= 512 :', dev_content_length_accumulate[512] / dev_cnt)
print('\n')
def behavior_statistic(train_root, dev_root):
train_cnt = 0
dev_cnt = 0
train_user_counter = collections.Counter()
dev_user_counter = collections.Counter()
dev_exclude_train_user_counter = collections.Counter()
train_news_counter = collections.Counter()
dev_news_counter = collections.Counter()
dev_exclude_train_news_counter = collections.Counter()
train_max_history_num = 0
train_min_history_num = 1024
train_history_num = 0
dev_max_history_num = 0
dev_min_history_num = 1024
dev_history_num = 0
train_history_distribution = {i: 0 for i in range(1000)}
dev_history_distribution = {i: 0 for i in range(1000)}
train_click_cnt = 0
train_nonclick_cnt = 0
dev_click_cnt = 0
dev_nonclick_cnt = 0
dev_max_num = 0
with open(os.path.join(train_root, 'behaviors.tsv'), 'r', encoding='utf-8') as train_behaviors_file:
for line in train_behaviors_file:
impression_ID, user_ID, time, history, impressions = line.split('\t')
train_user_counter[user_ID] += 1
history_num = 0 if len(history.strip()) == 0 else len(history.strip().split(' '))
train_max_history_num = max(train_max_history_num, history_num)
train_min_history_num = min(train_min_history_num, history_num)
train_history_num += history_num
train_history_distribution[history_num] += 1
for h in history.strip().split(' '):
train_news_counter[h] += 1
for impression in impressions.strip().split(' '):
if impression[-2:] == '-1':
train_news_counter[impression[:-2]] += 1
train_click_cnt += 1
else:
train_nonclick_cnt += 1
train_cnt += 1
with open(os.path.join(dev_root, 'behaviors.tsv'), 'r', encoding='utf-8') as dev_behaviors_file:
for line in dev_behaviors_file:
impression_ID, user_ID, time, history, impressions = line.split('\t')
dev_user_counter[user_ID] += 1
history_num = 0 if len(history.strip()) == 0 else len(history.strip().split(' '))
dev_max_history_num = max(dev_max_history_num, history_num)
dev_min_history_num = min(dev_min_history_num, history_num)
dev_history_num += history_num
dev_history_distribution[history_num] += 1
if user_ID not in train_user_counter:
dev_exclude_train_user_counter[user_ID] += 1
for h in history.strip().split(' '):
dev_news_counter[h] += 1
if h not in train_news_counter:
dev_exclude_train_news_counter[h] += 1
dev_max_num = max(len(impressions.strip().split(' ')), dev_max_num)
for impression in impressions.strip().split(' '):
if impression[-2:] == '-1':
dev_news_counter[impression[:-2]] += 1
if impression[:-2] not in train_news_counter:
dev_exclude_train_news_counter[impression[:-2]] += 1
dev_click_cnt += 1
else:
dev_nonclick_cnt += 1
dev_cnt += 1
train_accumulate = [0 for _ in range(1000)]
dev_accumulate = [0 for _ in range(1000)]
train_accumulate[0] = train_history_distribution[0]
dev_accumulate[0] = dev_history_distribution[0]
for i in range(1, 1000):
train_accumulate[i] = train_accumulate[i - 1] + train_history_distribution[i]
dev_accumulate[i] = dev_accumulate[i - 1] + dev_history_distribution[i]
print('train num :', train_cnt)
print('dev num :', dev_cnt)
print('train user :', len(train_user_counter))
print('dev user :', len(dev_user_counter))
print('dev exclude train user :', len(dev_exclude_train_user_counter))
print('train news :', len(train_news_counter))
print('dev news :', len(dev_news_counter))
print('dev exclude train news :', len(dev_exclude_train_news_counter))
print('train max history num :', train_max_history_num)
print('train min history num :', train_min_history_num)
print('train history num :', train_history_num / train_cnt)
print('dev max history num :', dev_max_history_num)
print('dev min history num :', dev_min_history_num)
print('dev history num :', dev_history_num / dev_cnt)
# print('train history distribution : ' + str(train_history_distribution))
# print('dev history distribution : ' + str(dev_history_distribution))
print('train history num = 0 :', train_accumulate[0] / train_cnt)
print('train history num <= 25 :', train_accumulate[25] / train_cnt)
print('train history num <= 50 :', train_accumulate[50] / train_cnt)
print('train history num <= 100 :', train_accumulate[100] / train_cnt)
print('train history num <= 200 :', train_accumulate[200] / train_cnt)
print('train history num <= 250 :', train_accumulate[250] / train_cnt)
print('train history num <= 500 :', train_accumulate[500] / train_cnt)
print('dev history num = 0 :', dev_accumulate[0] / dev_cnt)
print('dev history num <= 25 :', dev_accumulate[25] / dev_cnt)
print('dev history num <= 50 :', dev_accumulate[50] / dev_cnt)
print('dev history num <= 100 :', dev_accumulate[100] / dev_cnt)
print('dev history num <= 200 :', dev_accumulate[200] / dev_cnt)
print('dev history num <= 250 :', dev_accumulate[250] / dev_cnt)
print('dev history num <= 500 :', dev_accumulate[500] / dev_cnt)
print('train click num :', train_click_cnt)
print('train non-click num :', train_nonclick_cnt)
print('dev click num :', dev_click_cnt)
print('dev non-click num :', dev_nonclick_cnt)
print('dev max num :', dev_max_num)
print('\n')
if __name__ == '__main__':
news_statistic('../MIND/200000/train', '../MIND/200000/dev')
behavior_statistic('../MIND/200000/train', '../MIND/200000/dev')