forked from cuixiaopi/NNR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
72 lines (64 loc) · 3.33 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
from config import Config
import torch
from MIND_corpus import MIND_Corpus
from model import Model
from trainer import Trainer, distributed_train
from util import compute_scores, get_run_index
import torch.multiprocessing as mp
def train(config: Config, mind_corpus: MIND_Corpus):
model = Model(config)
model.initialize()
run_index = get_run_index(config.result_dir)
if config.world_size == 1:
trainer = Trainer(model, config, mind_corpus, run_index)
trainer.train()
else:
try:
mp.spawn(distributed_train, args=(model, config, mind_corpus, run_index), nprocs=config.world_size, join=True)
except Exception as e:
print(e)
e = str(e).lower()
if 'cuda' in e or 'pytorch' in e:
exit()
config.run_index = run_index
def dev(config: Config, mind_corpus: MIND_Corpus):
model = Model(config)
model.load_state_dict(torch.load(config.dev_model_path, map_location=torch.device('cpu'))[model.model_name])
model.cuda()
dev_res_dir = os.path.join(config.dev_res_dir, config.dev_model_path.replace('\\', '_').replace('/', '_'))
if not os.path.exists(dev_res_dir):
os.mkdir(dev_res_dir)
auc, mrr, ndcg5, ndcg10 = compute_scores(model, mind_corpus, config.batch_size, 'dev', dev_res_dir + '/' + model.model_name + '.txt', config.dataset)
print('Dev : ' + config.dev_model_path)
print('AUC : %.4f\nMRR : %.4f\nnDCG@5 : %.4f\nnDCG@10 : %.4f' % (auc, mrr, ndcg5, ndcg10))
return auc, mrr, ndcg5, ndcg10
def test(config: Config, mind_corpus: MIND_Corpus):
model = Model(config)
model.load_state_dict(torch.load(config.test_model_path, map_location=torch.device('cpu'))[model.model_name])
model.cuda()
test_res_dir = os.path.join(config.test_res_dir, config.test_model_path.replace('\\', '_').replace('/', '_'))
if not os.path.exists(test_res_dir):
os.mkdir(test_res_dir)
auc, mrr, ndcg5, ndcg10 = compute_scores(model, mind_corpus, config.batch_size, 'test', test_res_dir + '/' + model.model_name + '.txt', config.dataset)
print('test model path : ' + config.test_model_path)
print('test output file : ' + test_res_dir + '/' + model.model_name + '.txt')
if config.dataset != 'large':
print('AUC : %.4f\nMRR : %.4f\nnDCG@5 : %.4f\nnDCG@10 : %.4f' % (auc, mrr, ndcg5, ndcg10))
if config.mode == 'train':
with open(config.result_dir + '/#' + str(config.run_index) + '-test', 'w') as result_f:
result_f.write('#' + str(config.run_index) + '\t' + str(auc) + '\t' + str(mrr) + '\t' + str(ndcg5) + '\t' + str(ndcg10) + '\n')
elif config.mode == 'test' and config.test_output_file != '':
with open(config.test_output_file, 'w', encoding='utf-8') as f:
f.write('#' + str(config.seed + 1) + '\t' + str(auc) + '\t' + str(mrr) + '\t' + str(ndcg5) + '\t' + str(ndcg10) + '\n')
if __name__ == '__main__':
config = Config()
mind_corpus = MIND_Corpus(config)
if config.mode == 'train':
train(config, mind_corpus)
config.test_model_path = config.best_model_dir + '/#' + str(config.run_index) + '/' + config.news_encoder + '-' + config.user_encoder
test(config, mind_corpus)
elif config.mode == 'dev':
dev(config, mind_corpus)
elif config.mode == 'test':
test(config, mind_corpus)