-
Notifications
You must be signed in to change notification settings - Fork 236
/
Copy pathmovi_c_worker.py
232 lines (199 loc) · 9.18 KB
/
movi_c_worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Copyright 2022 The Kubric Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Worker file for the Multi-Object Video (MOVi) C (and CC) datasets.
* The number of objects is randomly chosen between
--min_num_objects (3) and --max_num_objects (10)
* The objects are randomly chosen from the Google Scanned Objects dataset
* Background is an random HDRI from the HDRI Haven dataset,
projected onto a Dome (half-sphere).
The HDRI is also used for lighting the scene.
"""
import logging
import bpy
import kubric as kb
from kubric.simulator import PyBullet
from kubric.renderer import Blender
import numpy as np
# --- Some configuration values
# the region in which to place objects [(min), (max)]
SPAWN_REGION = [(-5, -5, 1), (5, 5, 5)]
VELOCITY_RANGE = [(-4., -4., 0.), (4., 4., 0.)]
# --- CLI arguments
parser = kb.ArgumentParser()
parser.add_argument("--objects_split", choices=["train", "test"],
default="train")
# Configuration for the objects of the scene
parser.add_argument("--min_num_objects", type=int, default=3,
help="minimum number of objects")
parser.add_argument("--max_num_objects", type=int, default=10,
help="maximum number of objects")
# Configuration for the floor and background
parser.add_argument("--floor_friction", type=float, default=0.3)
parser.add_argument("--floor_restitution", type=float, default=0.5)
parser.add_argument("--backgrounds_split", choices=["train", "test"],
default="train")
parser.add_argument("--camera", choices=["fixed_random", "linear_movement"],
default="fixed_random")
parser.add_argument("--max_camera_movement", type=float, default=4.0)
# Configuration for the source of the assets
parser.add_argument("--kubasic_assets", type=str,
default="gs://kubric-public/assets/KuBasic/KuBasic.json")
parser.add_argument("--hdri_assets", type=str,
default="gs://kubric-public/assets/HDRI_haven/HDRI_haven.json")
parser.add_argument("--gso_assets", type=str,
default="gs://kubric-public/assets/GSO/GSO.json")
parser.add_argument("--save_state", dest="save_state", action="store_true")
parser.set_defaults(save_state=False, frame_end=24, frame_rate=12,
resolution=256)
FLAGS = parser.parse_args()
# --- Common setups & resources
scene, rng, output_dir, scratch_dir = kb.setup(FLAGS)
simulator = PyBullet(scene, scratch_dir)
renderer = Blender(scene, scratch_dir, samples_per_pixel=64)
kubasic = kb.AssetSource.from_manifest(FLAGS.kubasic_assets)
gso = kb.AssetSource.from_manifest(FLAGS.gso_assets)
hdri_source = kb.AssetSource.from_manifest(FLAGS.hdri_assets)
# --- Populate the scene
# background HDRI
train_backgrounds, test_backgrounds = hdri_source.get_test_split(fraction=0.1)
if FLAGS.backgrounds_split == "train":
logging.info("Choosing one of the %d training backgrounds...", len(train_backgrounds))
hdri_id = rng.choice(train_backgrounds)
else:
logging.info("Choosing one of the %d held-out backgrounds...", len(test_backgrounds))
hdri_id = rng.choice(test_backgrounds)
background_hdri = hdri_source.create(asset_id=hdri_id)
#assert isinstance(background_hdri, kb.Texture)
logging.info("Using background %s", hdri_id)
scene.metadata["background"] = hdri_id
renderer._set_ambient_light_hdri(background_hdri.filename)
# Dome
dome = kubasic.create(asset_id="dome", name="dome",
friction=FLAGS.floor_friction,
restitution=FLAGS.floor_restitution,
static=True, background=True)
assert isinstance(dome, kb.FileBasedObject)
scene += dome
dome_blender = dome.linked_objects[renderer]
texture_node = dome_blender.data.materials[0].node_tree.nodes["Image Texture"]
texture_node.image = bpy.data.images.load(background_hdri.filename)
def get_linear_camera_motion_start_end(
movement_speed: float,
inner_radius: float = 8.,
outer_radius: float = 12.,
z_offset: float = 0.1,
):
"""Sample a linear path which starts and ends within a half-sphere shell."""
while True:
camera_start = np.array(kb.sample_point_in_half_sphere_shell(inner_radius,
outer_radius,
z_offset))
direction = rng.rand(3) - 0.5
movement = direction / np.linalg.norm(direction) * movement_speed
camera_end = camera_start + movement
if (inner_radius <= np.linalg.norm(camera_end) <= outer_radius and
camera_end[2] > z_offset):
return camera_start, camera_end
# Camera
logging.info("Setting up the Camera...")
scene.camera = kb.PerspectiveCamera(focal_length=35., sensor_width=32)
if FLAGS.camera == "fixed_random":
scene.camera.position = kb.sample_point_in_half_sphere_shell(
inner_radius=7., outer_radius=9., offset=0.1)
scene.camera.look_at((0, 0, 0))
elif FLAGS.camera == "linear_movement":
camera_start, camera_end = get_linear_camera_motion_start_end(
movement_speed=rng.uniform(low=0., high=FLAGS.max_camera_movement)
)
# linearly interpolate the camera position between these two points
# while keeping it focused on the center of the scene
# we start one frame early and end one frame late to ensure that
# forward and backward flow are still consistent for the last and first frames
for frame in range(FLAGS.frame_start - 1, FLAGS.frame_end + 2):
interp = ((frame - FLAGS.frame_start + 1) /
(FLAGS.frame_end - FLAGS.frame_start + 3))
scene.camera.position = (interp * np.array(camera_start) +
(1 - interp) * np.array(camera_end))
scene.camera.look_at((0, 0, 0))
scene.camera.keyframe_insert("position", frame)
scene.camera.keyframe_insert("quaternion", frame)
# Add random objects
train_split, test_split = gso.get_test_split(fraction=0.1)
if FLAGS.objects_split == "train":
logging.info("Choosing one of the %d training objects...", len(train_split))
active_split = train_split
else:
logging.info("Choosing one of the %d held-out objects...", len(test_split))
active_split = test_split
num_objects = rng.randint(FLAGS.min_num_objects,
FLAGS.max_num_objects+1)
logging.info("Randomly placing %d objects:", num_objects)
for i in range(num_objects):
obj = gso.create(asset_id=rng.choice(active_split))
assert isinstance(obj, kb.FileBasedObject)
scale = rng.uniform(0.75, 3.0)
obj.scale = scale / np.max(obj.bounds[1] - obj.bounds[0])
obj.metadata["scale"] = scale
scene += obj
kb.move_until_no_overlap(obj, simulator, spawn_region=SPAWN_REGION, rng=rng)
# initialize velocity randomly but biased towards center
obj.velocity = (rng.uniform(*VELOCITY_RANGE) -
[obj.position[0], obj.position[1], 0])
logging.info(" Added %s at %s", obj.asset_id, obj.position)
if FLAGS.save_state:
logging.info("Saving the simulator state to '%s' prior to the simulation.",
output_dir / "scene.bullet")
simulator.save_state(output_dir / "scene.bullet")
# Run dynamic objects simulation
logging.info("Running the simulation ...")
animation, collisions = simulator.run(frame_start=0,
frame_end=scene.frame_end+1)
# --- Rendering
if FLAGS.save_state:
logging.info("Saving the renderer state to '%s' ",
output_dir / "scene.blend")
renderer.save_state(output_dir / "scene.blend")
logging.info("Rendering the scene ...")
data_stack = renderer.render()
# --- Postprocessing
kb.compute_visibility(data_stack["segmentation"], scene.assets)
visible_foreground_assets = [asset for asset in scene.foreground_assets
if np.max(asset.metadata["visibility"]) > 0]
visible_foreground_assets = sorted( # sort assets by their visibility
visible_foreground_assets,
key=lambda asset: np.sum(asset.metadata["visibility"]),
reverse=True)
data_stack["segmentation"] = kb.adjust_segmentation_idxs(
data_stack["segmentation"],
scene.assets,
visible_foreground_assets)
scene.metadata["num_instances"] = len(visible_foreground_assets)
# Save to image files
kb.write_image_dict(data_stack, output_dir)
kb.post_processing.compute_bboxes(data_stack["segmentation"],
visible_foreground_assets)
# --- Metadata
logging.info("Collecting and storing metadata for each object.")
kb.write_json(filename=output_dir / "metadata.json", data={
"flags": vars(FLAGS),
"metadata": kb.get_scene_metadata(scene),
"camera": kb.get_camera_info(scene.camera),
"instances": kb.get_instance_info(scene, visible_foreground_assets),
})
kb.write_json(filename=output_dir / "events.json", data={
"collisions": kb.process_collisions(
collisions, scene, assets_subset=visible_foreground_assets),
})
kb.done()