-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathsequence.cc
677 lines (594 loc) · 25.2 KB
/
sequence.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
// Copyright 2021 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "sequence.h"
#include <algorithm>
#include <limits>
#include <map>
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Debug.h"
#include "loop_nest.h"
#include "sair_op_interfaces.h"
#include "sair_ops.h"
#include "util.h"
#define DEBUG_TYPE "sair-sequence"
#define DBGS(X) llvm::dbgs() << "[" DEBUG_TYPE "]"
namespace sair {
namespace {
// A graph with as nodes operations of OpTy. Maintains the order in which the
// nodes were added to enable deterministic traversal order.
template <typename OpTy>
class ConcreteOpGraph {
public:
ConcreteOpGraph() {}
// Insert a new node into the graph.
bool insert(OpTy key) {
if (adjacency_.count(key)) return false;
keys_.push_back(key);
adjacency_.try_emplace(key);
return true;
}
// Returns a mutable reference to the adjacency list of the given node.
llvm::SetVector<OpTy> &operator[](OpTy key) {
(void)insert(key);
return adjacency_[key];
}
// Returns the adjacency list of the given node.
llvm::SetVector<OpTy> lookup(OpTy key) const {
return adjacency_.lookup(key);
}
// Returns `true` if the graph has no nodes.
bool empty() const { return keys_.empty(); }
// Returns a list of nodes in the graph.
llvm::ArrayRef<OpTy> keys() const { return llvm::ArrayRef(keys_); }
private:
llvm::SmallVector<OpTy> keys_;
llvm::SmallDenseMap<OpTy, llvm::SetVector<OpTy>> adjacency_;
};
using ComputeOpGraph = ConcreteOpGraph<ComputeOpInstance>;
using OpGraph = ConcreteOpGraph<OpInstance>;
// A pseudo-container class implementing a DFS postorder iterator of a graph of
// compute ops. Provides traversal iterators through the customary begin/end.
template <typename OpTy>
class DFSPostorderTraversal {
private:
// DFS traversal state. Maintains an explicit stack to avoid recursive
// functions on a potentially large number of IR elements.
struct DFSState {
llvm::DenseSet<OpTy> visited;
llvm::SetVector<OpTy> stack;
};
public:
// Constructs the traversal container for the given graph.
explicit DFSPostorderTraversal(const ConcreteOpGraph<OpTy> &graph)
: graph_(graph) {}
// Postorder DFS iterator over the operation graph.
class iterator {
friend class DFSPostorderTraversal;
public:
using iterator_category = std::input_iterator_tag;
using value_type = OpTy;
using pointer = const OpTy *;
using reference = const OpTy &;
using difference_type = ptrdiff_t;
// Constructs a null (end) iterator.
iterator() { SetEmpty(); }
// Dereferences the iterator.
OpTy operator*() { return current_; }
// Increments the iterator to point to the next DFS postorder element.
iterator &operator++() {
// Null iterator does not need to be incremented.
if (!container_ || current_ == nullptr) return *this;
// If we haven't circled back to the root operation, continue the DFS.
if (current_ != root_) {
current_ = VisitDFSPostorder(root_, container_->graph_, state_);
return *this;
}
// Otherwise, go through graph nodes to check for another traversal root,
// i.e. the op that hasn't been visited yet.
for (OpTy op : container_->graph_.keys()) {
if (!state_.visited.contains(op)) {
root_ = op;
current_ = VisitDFSPostorder(root_, container_->graph_, state_);
return *this;
}
}
// If there is no unvisited op in the graph, the traversal is complete.
SetEmpty();
return *this;
}
// Returns `true` if `other` points to the same element of the same
// container, or if both `this` and `other` are null iterators.
bool operator==(const iterator &other) const {
return (current_ == other.current_ && container_ == other.container_) ||
(IsEmpty() && other.IsEmpty());
}
// Returns `false` if `other` points to the same element of the same
// container, or if both `this` and `other` are null iterators.
bool operator!=(const iterator &other) const { return !(*this == other); }
// Returns the range of ops that form a cycle in the graph. Only callable
// if the iterator has hit the cycle (dereferences to nullptr).
const llvm::iterator_range<typename llvm::SetVector<OpTy>::iterator>
FindCycleOnStack() const {
assert(current_ == nullptr && "the iterator hasn't hit the cycle (yet)");
OpTy pre_cycle_op = state_.stack.back();
llvm::SetVector<OpTy> children = container_->graph_.lookup(pre_cycle_op);
for (OpTy child : children) {
auto first_occurrence = llvm::find(state_.stack, child);
if (first_occurrence != state_.stack.end()) {
return llvm::make_range(first_occurrence, state_.stack.end());
}
}
llvm_unreachable("no cycle found");
}
private:
// Constructs the iterator pointing to the first element of the DFS
// postorder traversal in the given graph.
explicit iterator(const DFSPostorderTraversal *container)
: container_(container) {
if (!container || container_->graph_.empty()) {
SetEmpty();
return;
}
root_ = container_->graph_.keys().front();
current_ = VisitDFSPostorder(root_, container_->graph_, state_);
}
// Continues the DFS postorder visitation of `graph` started at `root` with
// the given `state`. The latter contains the virtual "call" stack of DFS,
// more specifically the list of operations the visitation of which was
// postponed until their children are visited. Returns the next operation in
// DFS postorder and updates `state` for subsequent calls. If `root` is
// returned, no further ops can be visited.
OpTy VisitDFSPostorder(OpTy root, const ConcreteOpGraph<OpTy> &graph,
DFSState &state) {
state.stack.insert(root);
do {
// Fetch the op to visit from the top of the stack. If it has unvisited
// children, put it back on stack, followed by the first child to visit.
// Next iterations will visit the child and get back to this op.
OpTy current = state.stack.pop_back_val();
bool all_children_visited = true;
llvm::SetVector<OpTy> predecessors = graph.lookup(current);
for (OpTy child : predecessors) {
if (state.visited.contains(child)) continue;
state.stack.insert(current);
// If `child` is already on the stack, we've hit a cycle.
if (!state.stack.insert(child)) return OpTy();
all_children_visited = false;
break;
}
// If all children are visited, it's time for the current op to be
// visited.
if (all_children_visited) {
state.visited.insert(current);
return current;
}
} while (!state.stack.empty());
llvm_unreachable("must have returned root instead");
}
// Sets the iterator to empty (end) state.
void SetEmpty() {
current_ = OpTy();
container_ = nullptr;
}
// Checks if the iterator is in the empty (end) state.
bool IsEmpty() const { return current_ == OpTy() && container_ == nullptr; }
const DFSPostorderTraversal *container_;
DFSState state_;
OpTy current_;
OpTy root_;
};
iterator begin() const { return iterator(this); }
iterator end() const { return iterator(); }
private:
const ConcreteOpGraph<OpTy> &graph_;
};
// Updates `graph` to remove self-dependencies.
void RemoveSelfDependencies(ComputeOpGraph &graph) {
llvm::ArrayRef<ComputeOpInstance> all_ops = graph.keys();
// Since we are working with predecessor graphs, drop self-links because the
// op is not expected to be its own predecessor.
for (const ComputeOpInstance &op : all_ops) {
graph[op].remove(op);
}
}
llvm::SetVector<ComputeOpInstance> ComputeOpFrontier(
const OpInstance &op, ArrayRef<OpInstance> ignore = {}) {
// The frontier is computed recursively as we don't expect long chains of
// non-compute operations between compute operations, particularly in
// canonicalized form that would have folded projection operations.
llvm::SetVector<ComputeOpInstance> frontier;
auto add_and_recurse = [&](std::optional<ResultInstance> value) {
if (!value.has_value()) return;
OpInstance defining_op = value->defining_op();
if (auto defining_compute_op = defining_op.dyn_cast<ComputeOpInstance>()) {
frontier.insert(defining_compute_op);
return;
}
llvm::SetVector<ComputeOpInstance> def_frontier =
ComputeOpFrontier(defining_op, ignore);
frontier.insert(def_frontier.begin(), def_frontier.end());
};
if (llvm::find(ignore, op) != ignore.end()) {
auto fby_op = cast<SairFbyOp>(op.GetDuplicatedOp());
add_and_recurse(OperandInstance(fby_op.Init(), op).GetValue());
} else {
for (OperandInstance operand : op.Operands()) {
add_and_recurse(operand.GetValue());
}
}
for (ResultInstance operand : op.getDomain()) {
add_and_recurse(operand);
}
return frontier;
}
} // end namespace
ProgramPoint::ProgramPoint(ComputeOpInstance op, Direction direction,
llvm::ArrayRef<mlir::StringAttr> loop_nest)
: program_(op.program()),
op_(op),
direction_(direction),
loop_nest_(loop_nest) {}
int ProgramPoint::NumCommonLoops(const ProgramPoint &other) const {
assert(program_ == other.program_);
auto it = std::mismatch(loop_nest_.begin(), loop_nest_.end(),
other.loop_nest_.begin(), other.loop_nest_.end());
return std::distance(loop_nest_.begin(), it.first);
}
void ProgramPoint::TrimLoopNest(int num_loops) {
loop_nest_ = loop_nest_.take_front(num_loops);
}
SequenceAnalysis::SequenceAnalysis(SairProgramOp program_op) {
AssertSuccess(Init(program_op, /*report_errors=*/false));
}
std::optional<SequenceAnalysis> SequenceAnalysis::Create(
SairProgramOp program_op, bool report_errors) {
SequenceAnalysis analysis;
if (mlir::failed(analysis.Init(program_op, report_errors))) {
return std::nullopt;
}
return std::move(analysis);
}
mlir::LogicalResult SequenceAnalysis::Init(SairProgramOp program_op,
bool report_errors) {
return ComputeDefaultSequence(program_op, report_errors);
}
SequenceAnalysis::RangeType SequenceAnalysis::Ops() const {
return RangeType(compute_ops_);
}
void SequenceAnalysis::AssignInferred() const {
int64_t number = 0;
for (ComputeOpInstance op : Ops()) {
op.SetDecisions(UpdateSequence(op.GetDecisions(), number++));
}
}
bool SequenceAnalysis::IsBefore(const ComputeOpInstance &first,
const OpInstance &second) const {
if (first == second) return false;
int64_t first_number = ExplicitSequenceNumber(first);
// If both ops are ComputeOps, just check the sequence numbers.
if (auto second_as_compute = second.dyn_cast<ComputeOpInstance>()) {
return first_number < ExplicitSequenceNumber(second_as_compute);
}
// If the second op is a non-compute, its implicit sequence number is equal to
// the largest explicit sequence number of its operands; so equal numbers mean
// the compute op is sequenced before the non-compute op due to a use-def
// chain between them.
// NOTE: extending this function to query the order between two non-compute
// ops will require looking for a potential use-def chain between them.
return first_number <= ImplicitSequenceNumber(second);
}
bool SequenceAnalysis::IsBefore(ProgramPoint point,
const ComputeOpInstance &op) const {
if (point.operation() == nullptr || point.operation() == op) {
return point.direction() == Direction::kBefore;
}
return IsBefore(point.operation(), op);
}
bool SequenceAnalysis::IsAfter(ProgramPoint point,
const ComputeOpInstance &op) const {
if (point.operation() == nullptr || point.operation() == op) {
return point.direction() == Direction::kAfter;
}
return IsBefore(op, point.operation());
}
void SequenceAnalysis::Insert(const ComputeOpInstance &op, ProgramPoint point) {
Insert(op, point.operation(), point.direction());
}
void SequenceAnalysis::Insert(const ComputeOpInstance &op,
const OpInstance &reference,
Direction direction) {
int64_t sequence_number = -1;
if (reference != nullptr) {
if (auto compute_op = reference.dyn_cast<ComputeOpInstance>()) {
sequence_number = ExplicitSequenceNumber(compute_op);
} else {
sequence_number = ImplicitSequenceNumber(reference);
}
}
// Implicit sequence number can be -1 if the reference operation doesn't
// depend on any explicitly sequenced operation. In this case, insert the
// operation at the beginning of the program for the "before" direction and at
// the end for the "after" direction.
if (sequence_number == -1) {
sequence_number = direction == Direction::kBefore ? 0 : compute_ops_.size();
} else if (direction == Direction::kAfter) {
++sequence_number;
}
for (int64_t number = sequence_number, e = compute_ops_.size(); number < e;
++number) {
op_to_sequence_number_[compute_ops_[number]] = number + 1;
}
op_to_sequence_number_.try_emplace(op, sequence_number);
compute_ops_.insert(compute_ops_.begin() + sequence_number, op);
}
void SequenceAnalysis::Erase(const ComputeOpInstance &op) {
int64_t sequence_number = ExplicitSequenceNumber(op);
for (int64_t number = sequence_number + 1, e = compute_ops_.size();
number < e; ++number) {
op_to_sequence_number_[compute_ops_[number]] = number - 1;
}
op_to_sequence_number_.erase(op);
compute_ops_.erase(compute_ops_.begin() + sequence_number);
}
int64_t SequenceAnalysis::ImplicitSequenceNumber(const OpInstance &op) const {
assert(!op.isa<ComputeOpInstance>() &&
"only non-compute ops have implicit sequence numbers");
llvm::SetVector<ComputeOpInstance> frontier =
ComputeOpFrontier(op, fby_ops_to_cut_);
auto get_explicit_number = [this](ComputeOpInstance compute_op) {
return ExplicitSequenceNumber(compute_op);
};
auto range = llvm::map_range(frontier, get_explicit_number);
int64_t number = -1;
for (int64_t sequence : range) number = std::max(number, sequence);
return number;
}
std::pair<ComputeOpInstance, ComputeOpInstance> SequenceAnalysis::GetSpan(
llvm::ArrayRef<ComputeOpInstance> ops) const {
assert(!ops.empty());
int64_t min = std::numeric_limits<int64_t>::max();
int64_t max = std::numeric_limits<int64_t>::min();
auto get_sequence_number = [&](ComputeOpInstance op) {
return ExplicitSequenceNumber(op);
};
for (int64_t sequence_number : llvm::map_range(ops, get_sequence_number)) {
min = std::min(sequence_number, min);
max = std::max(sequence_number, max);
}
return std::make_pair(compute_ops_[min], compute_ops_[max]);
}
ProgramPoint SequenceAnalysis::FindInsertionPoint(
const IterationSpaceAnalysis &iter_spaces, const OpInstance &start,
int num_loops, Direction direction) const {
// Compute initial sequence number.
int sequence_number;
if (auto compute_op = start.dyn_cast<ComputeOpInstance>()) {
sequence_number = ExplicitSequenceNumber(compute_op);
} else {
sequence_number = ImplicitSequenceNumber(start);
// If the operation is not a ComputeOp and we want to schedule before the
// operation, then any point that is before the next ComputeOp is fine as
// the current operation is implicitly scheduled.
if (sequence_number >= 0 && direction == Direction::kBefore) {
++sequence_number;
}
}
llvm::ArrayRef<mlir::StringAttr> start_loop_nest =
iter_spaces.Get(start).loop_names();
int num_common_loops = start_loop_nest.size();
int delta = direction == Direction::kBefore ? -1 : 1;
sequence_number += delta;
while (sequence_number >= 0 && sequence_number < compute_ops_.size()) {
ComputeOpInstance new_op = compute_ops_[sequence_number];
llvm::ArrayRef<mlir::Attribute> new_loops = new_op.Loops();
num_common_loops = std::min<int>(new_loops.size(), num_common_loops);
for (; num_common_loops > 0; --num_common_loops) {
auto loop = new_loops[num_common_loops - 1].cast<LoopAttr>();
if (loop.name() == start_loop_nest[num_common_loops - 1]) break;
}
if (num_common_loops <= num_loops) break;
sequence_number += delta;
}
sequence_number -= delta;
auto target_loop_nest = start_loop_nest.take_front(num_loops);
if (sequence_number < 0) {
return ProgramPoint(start.program(), Direction::kBefore, target_loop_nest);
} else if (sequence_number >= compute_ops_.size()) {
return ProgramPoint(start.program(), Direction::kAfter, target_loop_nest);
} else {
return ProgramPoint(compute_ops_[sequence_number], direction,
target_loop_nest);
}
}
// Detects use-def cycles in the program and if they can be cut by removing the
// use-def edge of the "value" operand of a "fby" op, adds such ops into
// `fby_ops_to_cut`. Otherwise, returns failure.
static mlir::LogicalResult FindEdgesToCut(
SairProgramOp program, llvm::SmallVectorImpl<OpInstance> &fby_ops_to_cut,
bool report_errors) {
// Create a graph of Sair predecessor ops.
OpGraph predecessors;
program.WalkOpInstances([&](const OpInstance &op) {
predecessors.insert(op);
for (ResultInstance operand : op.getDomain()) {
predecessors[op].insert(operand.defining_op());
}
for (OperandInstance operand : op.Operands()) {
auto value = operand.GetValue();
if (!value.has_value()) continue;
predecessors[op].insert(value->defining_op());
}
});
// Find cycles in the predecessor graph. Cycles that don't have an edge ending
// as "value" of an "fby" operation are not allowed, report failure if found.
// For cycles that do have such an edge, remove it and start over. Iterate
// until all cycles are resolved.
bool found = false;
do {
DFSPostorderTraversal<OpInstance> traversal(predecessors);
found = false;
for (auto it = traversal.begin(), eit = traversal.end(); it != eit; ++it) {
if (*it != nullptr) continue;
auto cycle = llvm::to_vector<4>(it.FindCycleOnStack());
cycle.push_back(cycle.front());
for (int i = 0, e = cycle.size() - 1; i < e; ++i) {
// Filter out operations that are not fby operations.
if (cycle[i].is_copy()) continue;
mlir::Operation *concrete_op = cycle[i].GetDuplicatedOp();
auto fby_op = dyn_cast<SairFbyOp>(concrete_op);
if (fby_op == nullptr) continue;
OperandInstance operand(fby_op.Value(), cycle[i]);
auto value = operand.GetValue();
if (!value.has_value()) continue;
// If the cycle is not caused by the "then" edge of an "fby", we are
// not interested in cutting it here.
if (value->defining_op() != cycle[i + 1]) continue;
assert(predecessors[cycle[i]].contains(cycle[i + 1]));
predecessors[cycle[i]].remove(cycle[i + 1]);
found = true;
// This is the edge to cut and not consider when computing the
// backward slice.
fby_ops_to_cut.push_back(cycle[i]);
break;
}
// If there is no edge in the cycle that connects an operation to "fby"
// through its "then" operand, the cycle is invalid in the program.
if (found) break;
if (!report_errors) return mlir::failure();
mlir::InFlightDiagnostic diag = cycle.front().EmitError()
<< "unexpected use-def cycle";
for (OpInstance cycle_op : llvm::drop_begin(cycle)) {
cycle_op.AttachNote(diag) << "operation in the cycle";
}
return diag;
}
} while (found);
return mlir::success();
}
bool FindImplicitlySequencedUseDefChain(
const ComputeOpInstance &from, const ComputeOpInstance &to,
llvm::SmallVectorImpl<OpInstance> &stack) {
llvm::DenseSet<OpInstance> visited;
stack.push_back(from);
do {
OpInstance current = stack.back();
bool all_users_visited = true;
for (ResultInstance result : current.Results()) {
for (auto &[user, pos] : result.GetUses()) {
(void)pos;
if (!visited.insert(user).second) continue;
if (user == to) return true;
if (user.isa<ComputeOpInstance>()) continue;
stack.push_back(user);
all_users_visited = false;
break;
}
if (!all_users_visited) break;
}
if (all_users_visited) stack.pop_back();
} while (!stack.empty());
return false;
}
// Returns an iterator range pointing to `sequenced_ops` of all operations
// sequenced before the given one, in their relative order. All operations are
// given a relative order even if they don't have a sequence attribute attached.
// The sequence number returned in this iteration may differ from that of the
// sequence attribute if the Sair program hasn't been canonicalized.
static llvm::iterator_range<
std::multimap<int64_t, ComputeOpInstance>::const_iterator>
OpsBefore(const std::multimap<int64_t, ComputeOpInstance> &sequenced_ops,
ComputeOpInstance op) {
DecisionsAttr decisions = op.GetDecisions();
if (decisions.sequence() == nullptr) {
return llvm::make_range(sequenced_ops.end(), sequenced_ops.end());
}
int64_t sequence_number = decisions.sequence().getInt();
return llvm::make_range(sequenced_ops.begin(),
sequenced_ops.lower_bound(sequence_number));
}
mlir::LogicalResult SequenceAnalysis::ComputeDefaultSequence(
SairProgramOp program, bool report_errors) {
// We use a standard multimap because (a) the sequence numbers can be shared
// and (b) we need a deterministic increasing order that is provided by this
// map and not provided by hash table-based maps.
std::multimap<int64_t, ComputeOpInstance> initial_sequence;
program.WalkComputeOpInstances([&](const ComputeOpInstance &op) {
DecisionsAttr decisions = op.GetDecisions();
if (decisions.sequence() == nullptr) return;
initial_sequence.emplace(decisions.sequence().getInt(), op);
});
// This shouldn't fail as long as we control use-def chain order in the input
// IR. When we don't, this could fail on unexpected use-def cycles, i.e.
// cycles that are not caused by "fby", and should be reported back to the
// caller.
if (mlir::failed(FindEdgesToCut(program, fby_ops_to_cut_, report_errors))) {
return mlir::failure();
}
ComputeOpGraph predecessors;
program.WalkComputeOpInstances([&](const ComputeOpInstance &op) {
// Put the op in the adjacency list even if it has no predecessors.
predecessors.insert(op);
// Add all predecessor compute ops due to use-def chains. Note that we add
// only the frontier since we will traverse the entire graph in DFS manner,
// so there's no need to compute the entire slice here.
predecessors[op] = ComputeOpFrontier(op, fby_ops_to_cut_);
// Add all ops with smaller sequence numbers as known predecessors.
auto range = llvm::make_second_range(OpsBefore(initial_sequence, op));
predecessors[op].insert(range.begin(), range.end());
});
RemoveSelfDependencies(predecessors);
// Walk the predecessor graph in DFS post-order, meaning that we will visit a
// compute op after visiting all of its predecessors, and assign new sequence
// numbers.
DFSPostorderTraversal<ComputeOpInstance> traversal(predecessors);
compute_ops_.reserve(predecessors.keys().size());
for (auto it = traversal.begin(), eit = traversal.end(); it != eit; ++it) {
if (*it != nullptr) {
op_to_sequence_number_.try_emplace(*it, compute_ops_.size());
compute_ops_.push_back(*it);
continue;
}
// If the traversal hits a cycle (indicated by the iterator pointing to
// nullptr), this means order of operations implied by use-def chains
// contradicts that implied by sequence attributes. That is, a use of a
// value is sequenced before the value is defined. This situation is
// slightly different from the pure use-def cycle detected above.
auto cycle = llvm::to_vector<4>(it.FindCycleOnStack());
LLVM_DEBUG({
DBGS() << "unexpected cycle detected\n";
for (const ComputeOpInstance &cycle_op : cycle)
DBGS() << cycle_op.getOperation() << "\n";
});
if (!report_errors) return mlir::failure();
cycle.push_back(cycle.front());
mlir::InFlightDiagnostic diag =
cycle.back().EmitError()
<< "operation sequencing contradicts use-def chains";
for (int i = cycle.size() - 2; i >= 0; --i) {
llvm::SmallVector<OpInstance> stack;
if (FindImplicitlySequencedUseDefChain(cycle[i + 1], cycle[i], stack)) {
for (OpInstance stack_op : llvm::drop_begin(stack)) {
stack_op.AttachNote(diag) << "implicitly sequenced operation";
}
cycle[i].AttachNote(diag)
<< "sequenceable operation sequenced by use-def";
} else {
cycle[i].AttachNote(diag) << "sequenceable operation";
}
}
return diag;
}
return mlir::success();
}
} // namespace sair