-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathcoins_grid.py
125 lines (104 loc) · 3.97 KB
/
coins_grid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# Copyright 2010 Hakan Kjellerstrand [email protected]
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Coins grid problem in Google CP Solver.
Problem from
Tony Hurlimann: "A coin puzzle - SVOR-contest 2007"
http://www.svor.ch/competitions/competition2007/AsroContestSolution.pdf
'''
In a quadratic grid (or a larger chessboard) with 31x31 cells, one should
place coins in such a way that the following conditions are fulfilled:
1. In each row exactly 14 coins must be placed.
2. In each column exactly 14 coins must be placed.
3. The sum of the quadratic horizontal distance from the main diagonal
of all cells containing a coin must be as small as possible.
4. In each cell at most one coin can be placed.
The description says to place 14x31 = 434 coins on the chessboard each row
containing 14 coins and each column also containing 14 coins.
'''
Cf the LPL model:
http://diuflx71.unifr.ch/lpl/GetModel?name=/puzzles/coin
Note: Laurent Perron helped me to improve this model.
Compare with the following models:
* Tailor/Essence': http://hakank.org/tailor/coins_grid.eprime
* MiniZinc: http://hakank.org/minizinc/coins_grid.mzn
* SICStus: http://hakank.org/sicstus/coins_grid.pl
* Zinc: http://hakank.org/minizinc/coins_grid.zinc
* Choco: http://hakank.org/choco/CoinsGrid.java
* Comet: http://hakank.org/comet/coins_grid.co
* ECLiPSe: http://hakank.org/eclipse/coins_grid.ecl
* Gecode: http://hakank.org/gecode/coins_grid.cpp
* Gecode/R: http://hakank.org/gecode_r/coins_grid.rb
* JaCoP: http://hakank.org/JaCoP/CoinsGrid.java
This model was created by Hakan Kjellerstrand ([email protected])
Also see my other Google CP Solver models:
http://www.hakank.org/google_or_tools/
"""
import sys
from ortools.constraint_solver import pywrapcp
def main(n, c):
# Create the solver.
solver = pywrapcp.Solver("Coins grid")
# data
print("n: ", n)
print("c: ", c)
# declare variables
x = {}
for i in range(n):
for j in range(n):
x[(i, j)] = solver.BoolVar("x %i %i" % (i, j))
#
# constraints
#
# sum rows/columns == c
for i in range(n):
solver.Add(solver.SumEquality([x[(i, j)] for j in range(n)], c)) # sum rows
solver.Add(solver.SumEquality([x[(j, i)] for j in range(n)], c)) # sum cols
# quadratic horizonal distance var
objective_var = solver.Sum(
[x[(i, j)] * (i - j) * (i - j) for i in range(n) for j in range(n)])
# objective
objective = solver.Minimize(objective_var, 1)
#
# solution and search
#
solution = solver.Assignment()
solution.Add([x[(i, j)] for i in range(n) for j in range(n)])
solution.AddObjective(objective_var)
# last solutions
collector = solver.LastSolutionCollector(solution)
search_log = solver.SearchLog(1000000, objective_var)
restart = solver.ConstantRestart(300)
solver.Solve(
solver.Phase([x[(i, j)] for i in range(n) for j in range(n)],
solver.CHOOSE_RANDOM, solver.ASSIGN_MAX_VALUE),
[collector, search_log, objective])
print("objective:", collector.ObjectiveValue(0))
for i in range(n):
for j in range(n):
print(collector.Value(0, x[(i, j)]), end=" ")
print()
print()
print("failures:", solver.Failures())
print("branches:", solver.Branches())
print("WallTime:", solver.WallTime())
if __name__ == "__main__":
# data
n = 5 # the grid size
c = 2 # number of coins per row/column
if len(sys.argv) > 1:
n = int(sys.argv[1])
if len(sys.argv) > 2:
c = int(sys.argv[2])
main(n, c)