You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Given an array nums of n integers where n > 1, return an array output such that output[i] is equal to the product of all the elements of numsexcept nums[i].
Example:
Input: [1,2,3,4]
Output: [24,12,8,6]
Note: Please solve it without division and in O( n ).
Follow up:
Could you solve it with constant space complexity? (The output array does not count as extra space for the purpose of space complexity analysis.)
class Solution {
public:
vector<int> productExceptSelf(vector<int>& nums) {
int n = nums.size();
vector<int> fwd(n, 1), bwd(n, 1), res(n);
for (int i = 0; i < n - 1; ++i) {
fwd[i + 1] = fwd[i] * nums[i];
}
for (int i = n - 1; i > 0; --i) {
bwd[i - 1] = bwd[i] * nums[i];
}
for (int i = 0; i < n; ++i) {
res[i] = fwd[i] * bwd[i];
}
return res;
}
};
Java 解法一:
public class Solution {
public int[] productExceptSelf(int[] nums) {
int n = nums.length;
int[] res = new int[n];
int[] fwd = new int[n], bwd = new int[n];
fwd[0] = 1; bwd[n - 1] = 1;
for (int i = 1; i < n; ++i) {
fwd[i] = fwd[i - 1] * nums[i - 1];
}
for (int i = n - 2; i >= 0; --i) {
bwd[i] = bwd[i + 1] * nums[i + 1];
}
for (int i = 0; i < n; ++i) {
res[i] = fwd[i] * bwd[i];
}
return res;
}
}
我们可以对上面的方法进行空间上的优化,由于最终的结果都是要乘到结果 res 中,所以可以不用单独的数组来保存乘积,而是直接累积到结果 res 中,我们先从前面遍历一遍,将乘积的累积存入结果 res 中,然后从后面开始遍历,用到一个临时变量 right,初始化为1,然后每次不断累积,最终得到正确结果,参见代码如下:
C++ 解法二:
class Solution {
public:
vector<int> productExceptSelf(vector<int>& nums) {
vector<int> res(nums.size(), 1);
for (int i = 1; i < nums.size(); ++i) {
res[i] = res[i - 1] * nums[i - 1];
}
int right = 1;
for (int i = nums.size() - 1; i >= 0; --i) {
res[i] *= right;
right *= nums[i];
}
return res;
}
};
Java 解法二:
public class Solution {
public int[] productExceptSelf(int[] nums) {
int n = nums.length, right = 1;
int[] res = new int[n];
res[0] = 1;
for (int i = 1; i < n; ++i) {
res[i] = res[i - 1] * nums[i - 1];
}
for (int i = n - 1; i >= 0; --i) {
res[i] *= right;
right *= nums[i];
}
return res;
}
}
Given an array
nums
of n integers where n > 1, return an arrayoutput
such thatoutput[i]
is equal to the product of all the elements ofnums
exceptnums[i]
.Example:
Note: Please solve it without division and in O( n ).
Follow up:
Could you solve it with constant space complexity? (The output array does not count as extra space for the purpose of space complexity analysis.)
这道题给定我们一个数组,让我们返回一个新数组,对于每一个位置上的数是其他位置上数的乘积,并且限定了时间复杂度 O(n),并且不让我们用除法。如果让用除法的话,那这道题就应该属于 Easy,因为可以先遍历一遍数组求出所有数字之积,然后除以对应位置的上的数字。但是这道题禁止我们使用除法,那么我们只能另辟蹊径。我们想,对于某一个数字,如果我们知道其前面所有数字的乘积,同时也知道后面所有的数乘积,那么二者相乘就是我们要的结果,所以我们只要分别创建出这两个数组即可,分别从数组的两个方向遍历就可以分别创建出乘积累积数组。参见代码如下:
C++ 解法一:
Java 解法一:
我们可以对上面的方法进行空间上的优化,由于最终的结果都是要乘到结果 res 中,所以可以不用单独的数组来保存乘积,而是直接累积到结果 res 中,我们先从前面遍历一遍,将乘积的累积存入结果 res 中,然后从后面开始遍历,用到一个临时变量 right,初始化为1,然后每次不断累积,最终得到正确结果,参见代码如下:
C++ 解法二:
Java 解法二:
Github 同步地址:
#238
类似题目:
Trapping Rain Water
Maximum Product Subarray
Paint House II
参考资料:
https://leetcode.com/problems/product-of-array-except-self/
https://leetcode.com/problems/product-of-array-except-self/discuss/65638/My-simple-Java-solution
https://leetcode.com/problems/product-of-array-except-self/discuss/65622/Simple-Java-solution-in-O(n)-without-extra-space
LeetCode All in One 题目讲解汇总(持续更新中...)
The text was updated successfully, but these errors were encountered: