-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnormalize_data.R
423 lines (300 loc) · 14.4 KB
/
normalize_data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
#args = commandArgs(trailingOnly=TRUE)
target_file = args[1]
ref_file = args[2]
data_folder = args[3]
output_folder = args[4]
prefix = args[5]
if (length(args) > 5){
tcga_file = args[6]
} else {
tcga_file = NULL
}
source("package_loader.R")
source("tdm.R")
load_it(c("data.table", "gdata", "preprocessCore", "scales", "huge", "limma"))
message("Loading reference file...", appendLF=FALSE)
# Load ref_file.
# Read the first line of the reference file.
ref_head = readLines(paste0(data_folder, ref_file), n=1)
# Split all values in the header of the reference file by tabs.
split_head = unlist(strsplit(ref_head, "\t"))
# Read in the reference expression values.
ref_values = fread(paste0(data_folder, ref_file), header=F, skip=1, data.table=T)
# If there is no row name for the header, then handle it.
if(ncol(ref_values) == length(split_head)) {
ref_head = split_head[2:length(split_head)]
} else {
ref_head = split_head
}
rm(split_head)
# Add a rowname to the header, just to make things consistent.
setnames(ref_values, colnames(ref_values), c("gene", ref_head))
rm(ref_head)
message("loaded.")
message("Loading target file...", appendLF=FALSE)
# Load the target file.
# Get the header of the target file.
target_head = readLines(paste0(data_folder, target_file), n=1)
split_head = unlist(strsplit(target_head, "\t"))
# Read in the target expression file.
target_values = fread(paste0(data_folder, target_file), header=F, skip=1, data.table=T)
# Again, handle the case when there is no row name for the target
# file header.
if(ncol(target_values) == length(split_head)) {
target_head = split_head[2:length(split_head)]
} else {
target_head = split_head
}
rm(split_head)
setnames(target_values, colnames(target_values), c("gene", target_head))
rm(target_head)
message("loaded.")
message("Filtering genes in target to include only those in reference...", appendLF=FALSE)
target_values$gene = trim(target_values$gene)
# Figure out which genes are in the reference file, but not
# in the target file.
missing = ref_values$gene[!(ref_values$gene %in% target_values$gene)]
# Order the genes in the target file to be the same as those in
# the reference file.
#target_values = target_values[match(ref_values$gene, target_values$gene),1:ncol(target_values),with=FALSE]
if(nrow(target_values) < 1) {
stop("No matching genes found between datasets.")
}
# Filter the genes in the target file to include only those in
# the reference file.
target_values = target_values[target_values$gene %in% ref_values$gene,1:ncol(target_values),with=FALSE]
# Add missing data entries of all 0's for the genes that were in the
# reference file but not in the target file.
missing_matrix = matrix(rep(0.0,
(ncol(target_values)-1) * length(missing)),
nrow=length(missing))
if(nrow(missing_matrix) > 0) {
missing_dt = data.table(cbind(gene = missing, data.frame(missing_matrix)))
setnames(missing_dt, colnames(missing_dt), colnames(target_values))
target_values = rbindlist(list(target_values, missing_dt))
}
message("complete.")
message("Checking reference values...", appendLF=FALSE)
# Determine if ref_file contains any negative values.
neg = any(as.vector(as.matrix(ref_values[,2:ncol(ref_values),with=FALSE])) < 0)
# If there are negative values in reference data, then inverse log transform and
# relog transform using x+1.
if(neg) {
message("negative...transforming...", appendLF=FALSE)
ref_values = inv_log_transform(ref_values)
ref_values = log_transform_p1(ref_values)
}
# Order the genes in the target file to be the same as those in
# the reference file.
target_values = target_values[match(ref_values$gene, target_values$gene),1:ncol(target_values),with=FALSE]
message("completed.")
message("Converting NA's to 0's in reference data...", appendLF=FALSE)
# Convert NA to 0.
na_to_zero = function(dt, un = 0) gdata::NAToUnknown(dt, un)
ref_values = na_to_zero(ref_values)
message("completed.")
message("Performing nonparanormal normalization...", appendLF=FALSE)
npn = data.frame(target_values, check.names=FALSE)
rownames(npn) = chartr('.', '-', target_values[[1]])
colnames(npn) = chartr('.', '-', colnames(target_values))
npn = npn[,-1]
npn = data.matrix(npn)
# Get the column names of the target file.
cols = colnames(target_values[,2:ncol(target_values), with=F])
# Create a nonparanormal normalized dataset.
npn = huge.npn(t(npn), npn.func = "shrinkage", npn.thresh = NULL, verbose = TRUE)
write.table(t(npn), paste0(output_folder, prefix, "_NPN.pcl"), col.names=TRUE, row.names=TRUE, sep="\t", quote=FALSE)
message("completed.")
message("Performing zero-to-one scaling of nonparanormal normalized data...", appendLF=FALSE)
npn = data.frame(t(npn))
rownames(npn) = chartr('.', '-', target_values[[1]])
npn = cbind(gene=target_values[[1]], npn)
npn = data.table(npn)
# Zero to one scale the paranormal normalized data.
npn_zeroone = zero_to_one_transform(npn)
npn_zeroone = data.frame(npn_zeroone, check.names=FALSE)
rownames(npn_zeroone) = chartr('.', '-', target_values[[1]])
colnames(npn_zeroone) = chartr('.', '-', colnames(target_values))
# Get the column names of the target file.
cols = colnames(target_values[,2:ncol(target_values), with=F])
# Round all entries.
for(j in cols) set(npn_zeroone, j=j, value=as.numeric(npn_zeroone[[j]]))
write.table(npn_zeroone, paste0(output_folder, prefix, "_NPN_ZEROONE.pcl"), col.names=TRUE, row.names=FALSE, sep="\t", quote=FALSE)
message("completed.")
message("Performing quantile normalization...", appendLF=FALSE)
# Create a quantile normalized dataset.
# Create a target object for the quantile normalization.
ref_df = data.frame(ref_values[,2:ncol(ref_values),with=FALSE])
rownames(ref_df) = ref_values[[1]]
target_df = data.frame(target_values[,2:ncol(target_values),with=FALSE])
rownames(target_df) = target_values[[1]]
targ = normalize.quantiles.determine.target(
data.matrix(ref_df),
target.length=nrow(ref_df))
# Quantile normalize the data, against the reference distribution,
# using replacement - not averaging.
qn = data.matrix(normalize.quantiles.use.target(
data.matrix(target_df),targ,copy=F))
qn = data.frame(qn, check.names=FALSE)
rownames(qn) = chartr('.', '-', target_values[[1]])
qn = cbind(gene=target_values[[1]],qn)
colnames(qn) = chartr('.', '-', colnames(target_values))
write.table(qn, paste0(output_folder, prefix, "_QN.pcl"), col.names=TRUE, row.names=FALSE, sep="\t", quote=FALSE)
message("completed.")
message("Performing zero-to-one scaling of quantile normalized data...", appendLF=FALSE)
qn = data.table(qn)
# Zero to one scale the quantile normalized data.
qn_zeroone = zero_to_one_transform(qn)
qn_zeroone = data.frame(qn_zeroone, check.names=FALSE)
rownames(qn_zeroone) = chartr('.', '-', target_values[[1]])
colnames(qn_zeroone) = chartr('.', '-', colnames(target_values))
# Get the column names of the target file.
cols = colnames(target_values[,2:ncol(target_values), with=F])
# Round all entries.
for(j in cols) set(qn_zeroone, j=j, value=as.numeric(qn_zeroone[[j]]))
write.table(qn_zeroone, paste0(output_folder, prefix, "_QN_ZEROONE.pcl"), col.names=TRUE, row.names=FALSE, sep="\t", quote=FALSE)
message("completed.")
message("Perform TDM normalization...", appendLF=FALSE)
# TDM normalized the data.
tdm_values = tdm_transform(
target_data=target_values,
ref_data=ref_values,
negative=FALSE,
filter_p=FALSE,
inv_reference=TRUE,
log_target=TRUE)
tdm_values = data.frame(tdm_values, check.names=FALSE)
rownames(tdm_values) = chartr('.', '-', ref_values[[1]])
colnames(tdm_values) = chartr('.', '-', colnames(target_values))
write.table(tdm_values, paste0(output_folder, prefix, "_TDM.pcl"), col.names=TRUE, row.names=FALSE, sep="\t", quote=FALSE)
message("completed.")
message("Performing zero-to-one scaling of TDM normalized data...", appendLF=FALSE)
tdm_values = data.table(tdm_values)
# Zero to one scale the TDM normalized data.
tdm_zeroone = zero_to_one_transform(tdm_values)
tdm_zeroone = data.frame(tdm_zeroone, check.names=FALSE)
rownames(tdm_zeroone) = chartr('.', '-', ref_values[[1]])
colnames(tdm_zeroone) = chartr('.', '-', colnames(target_values))
# Get the column names of the target file.
cols = colnames(target_values[,2:ncol(target_values), with=F])
# Round all entries.
for(j in cols) set(tdm_zeroone, j=j, value=as.numeric(tdm_zeroone[[j]]))
write.table(tdm_zeroone, paste0(output_folder, prefix, "_TDM_ZEROONE.pcl"), col.names=TRUE, row.names=FALSE, sep="\t", quote=FALSE)
message("completed.")
message("Performing log transformation...", appendLF=FALSE)
# Log transform the data.
log = log_transform_p1(target_values)
log = data.frame(log, check.names=FALSE)
rownames(log) = chartr('.', '-', target_values[[1]])
colnames(log) = chartr('.', '-', colnames(target_values))
write.table(log, paste0(output_folder, prefix, "_LOG.pcl"), col.names=TRUE, row.names=FALSE, sep="\t", quote=FALSE)
message("completed.")
message("Performing zero-to-one scaling of log transformed data...", appendLF=FALSE)
log = data.table(log)
# Zero to one scale the LOG transformed data.
log_zeroone = zero_to_one_transform(log)
log_zeroone = data.frame(log_zeroone, check.names=FALSE)
rownames(log_zeroone) = chartr('.', '-', target_values[[1]])
colnames(log_zeroone) = chartr('.', '-', colnames(target_values))
# Get the column names of the target file.
cols = colnames(target_values[,2:ncol(target_values), with=F])
# Round all entries.
for(j in cols) set(log_zeroone, j=j, value=as.numeric(log_zeroone[[j]]))
write.table(log_zeroone, paste0(output_folder, prefix, "_LOG_ZEROONE.pcl"), col.names=TRUE, row.names=FALSE, sep="\t", quote=FALSE)
message("completed.")
if(!is.null(tcga_file)) {
message("Loading microarray data...", appendLF=FALSE)
# Load the microarray file.
# Get the header of the target file.
tcga_head = readLines(paste0(data_folder, tcga_file), n=1)
split_head = unlist(strsplit(tcga_head, "\t"))
# Read in the microarray expression file.
tcga_values = fread(paste0(data_folder, tcga_file), header=F, skip=1, data.table=T)
# Again, handle the case when there is no row name for the
# file header.
if(ncol(tcga_values) == length(split_head)) {
tcga_head = split_head[2:length(split_head)]
} else {
tcga_head = split_head
}
rm(split_head)
setnames(tcga_values, colnames(tcga_values), c("gene", tcga_head))
rm(tcga_head)
message("loaded.")
message("Checking microarray data...", appendLF=FALSE)
# Determine if ref_file contains any negative values.
neg = any(as.vector(as.matrix(tcga_values[,2:ncol(tcga_values),with=FALSE])) < 0)
# If there are negative values in reference data, then inverse log transform and
# relog transform using x+1.
if(neg) {
message("negative...transforming...", appendLF=FALSE)
tcga_values = inv_log_transform(tcga_values)
tcga_values = log_transform_p1(tcga_values)
}
tcga_values = na_to_zero(tcga_values)
# Filter the genes in the tcga file to include only those in
# the reference file.
tcga_values = tcga_values[tcga_values$gene %in% ref_values$gene,1:ncol(tcga_values),with=FALSE]
# Order the genes in the tcga file to be the same as those in
# the reference file.
tcga_values = tcga_values[match(ref_values$gene, tcga_values$gene),1:ncol(tcga_values),with=FALSE]
message("completed.")
message("Performing zero-to-one scaling of microarray data...", appendLF=FALSE)
# Zero to one scale the microarray data.
tcga_zeroone = zero_to_one_transform(tcga_values)
tcga_zeroone = data.frame(tcga_zeroone, check.names=FALSE)
rownames(tcga_zeroone) = chartr('.', '-', tcga_values[[1]])
colnames(tcga_zeroone) = chartr('.', '-', colnames(tcga_values))
# Get the column names of the microarray file.
cols = colnames(tcga_zeroone[,2:ncol(tcga_zeroone)])
# Round all entries.
for(j in cols) set(tcga_zeroone, j=j, value=as.numeric(tcga_zeroone[[j]]))
write.table(tcga_zeroone, paste0(output_folder, prefix, "_MA_ZEROONE.pcl"), col.names=TRUE, row.names=FALSE, sep="\t", quote=FALSE)
message("completed.")
}
message("Performing zero-to-one scaling of untransformed data...", appendLF=FALSE)
# Zero to one transform reference data.
target_zeroone = zero_to_one_transform(target_values)
target_zeroone = data.frame(target_zeroone, check.names=FALSE)
rownames(target_zeroone) = chartr('.', '-', target_values[[1]])
colnames(target_zeroone) = chartr('.', '-', colnames(target_values))
# Get the column names of the target file.
cols = colnames(target_values[,2:ncol(target_values), with=F])
# Round all entries.
for(j in cols) set(target_zeroone, j=j, value=as.numeric(target_zeroone[[j]]))
write.table(target_zeroone, paste0(output_folder, prefix, "_UN_ZEROONE.pcl"), col.names=TRUE, row.names=FALSE, sep="\t", quote=FALSE)
message("completed.")
message("Performing zero-to-one scaling of reference data...", appendLF=FALSE)
# Zero to one transform reference data.
ref_zeroone = zero_to_one_transform(ref_values)
ref_zeroone = data.frame(ref_zeroone, check.names=FALSE)
rownames(ref_zeroone) = chartr('.', '-', ref_values[[1]])
colnames(ref_zeroone) = chartr('.', '-', colnames(ref_values))
# Get the column names of the target file.
cols = colnames(ref_values[,2:ncol(ref_values), with=F])
# Round all entries.
for(j in cols) set(ref_zeroone, j=j, value=as.numeric(ref_zeroone[[j]]))
write.table(ref_zeroone, paste0(output_folder, prefix, "_ZEROONE.pcl"), col.names=TRUE, row.names=FALSE, sep="\t", quote=FALSE)
message("completed.")
ref_npn = data.frame(ref_values, check.names=FALSE)
rownames(ref_npn) = chartr('.', '-', ref_values[[1]])
colnames(ref_npn) = chartr('.', '-', colnames(ref_values))
ref_npn = ref_npn[,-1]
ref_npn = data.matrix(ref_npn)
ref_npn = huge.npn(t(ref_npn))
write.table(t(ref_npn), paste0(output_folder, prefix, "_REF_NPN.pcl"), col.names=TRUE, row.names=TRUE, sep="\t", quote=FALSE)
ref_npn = data.frame(t(ref_npn))
rownames(ref_npn) = chartr('.', '-', ref_values[[1]])
ref_npn = cbind(gene=ref_values[[1]], ref_npn)
ref_npn = data.table(ref_npn)
# Zero to one scale the paranormal normalized data.
ref_npn_zeroone = zero_to_one_transform(ref_npn)
ref_npn_zeroone = data.frame(ref_npn_zeroone, check.names=FALSE)
rownames(ref_npn_zeroone) = chartr('.', '-', ref_values[[1]])
colnames(ref_npn_zeroone) = chartr('.', '-', colnames(ref_values))
# Get the column names of the target file.
cols = colnames(ref_values[,2:ncol(ref_values), with=F])
# Round all entries.
for(j in cols) set(ref_npn_zeroone, j=j, value=as.numeric(ref_npn_zeroone[[j]]))
write.table(ref_npn_zeroone, paste0(output_folder, prefix, "_REF_NPN_ZEROONE.pcl"), col.names=TRUE, row.names=FALSE, sep="\t", quote=FALSE)
message("Normalization complete.")