-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFS_models.py
136 lines (112 loc) · 5.15 KB
/
FS_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import RFE
from sklearn.svm import SVR
from sklearn import metrics
from sklearn import model_selection
from lazypredict.Supervised import LazyClassifier
class FeatureSelection:
def __init__(self, X, Y, model=None, verbose=True):
self.X = X
self.Y = Y
self.verbose = verbose
if model is None:
self.models = [self.variance_threshold,
# self.sequential,
# self.svm_rfe,
self.univariate,
self.L1,
self.tree_based]
def variance_threshold(self):
if self.verbose:
print('==== MODEL: VARIANCE THRESHOLD ====')
from sklearn.feature_selection import VarianceThreshold
sel = VarianceThreshold(threshold=(.8 * (1 - .8)))
X_new = sel.fit_transform(self.X)
self.lazy_predict(X_new, self.Y)
return [[X_new.shape[1], self.predict(X_new, self.Y)]]
def sequential(self, direction='forward',k_list=None):
if self.verbose:
print('==== MODEL: SEQUENTIAL {} ===='.format(direction.upper()))
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SequentialFeatureSelector
if k_list is None:
k_list = range(1, self.X.shape[1], int(self.X.shape[1] * 0.2))
# Build RF classifier to use in feature selection
clf = RandomForestClassifier(n_estimators=100, n_jobs=-1)
results = []
for k in k_list:
print('K =', k, end=', ')
sfs = SequentialFeatureSelector(clf, n_features_to_select=k, direction=direction)
sfs.fit(self.X, self.Y)
X_new = sfs.transform(self.X)
self.lazy_predict(X_new, self.Y)
results.append([X_new.shape[1], self.predict(X_new, self.Y)])
return results
def svm_rfe(self):
# if self.verbose:
# print('==== MODEL: SVM RFE ====')
# estimator = SVR(kernel='linear')
# selector = RFE(estimator, n_features_to_select=2, step=1)
# selector = selector.fit(X_train, Y_train)
# selector.support_
# selector.ranking_
pass
def univariate(self, k_list=None):
if self.verbose:
print('==== MODEL: UNIVARIATE ====')
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
if k_list is None:
k_list = range(1, self.X.shape[1], int(self.X.shape[1] * 0.1))
results = []
for k in k_list:
print('K =', k, end=', ')
X_new = SelectKBest(chi2, k=k).fit_transform(self.X, self.Y)
self.lazy_predict(X_new, self.Y)
results.append([X_new.shape[1], self.predict(X_new, self.Y)])
return results
def L1(self):
if self.verbose:
print('==== MODEL: L1-BASED ====')
from sklearn.svm import LinearSVC
from sklearn.feature_selection import SelectFromModel
lsvc = LinearSVC(C=0.01, penalty="l1", dual=False).fit(self.X, self.Y)
model = SelectFromModel(lsvc, prefit=True)
X_new = model.transform(self.X)
self.lazy_predict(X_new, self.Y)
return [[X_new.shape[1], self.predict(X_new, self.Y)]]
def tree_based(self):
if self.verbose:
print('==== MODEL: TREE-BASED ====')
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.feature_selection import SelectFromModel
clf = ExtraTreesClassifier(n_estimators=50)
clf = clf.fit(self.X, self.Y)
model = SelectFromModel(clf, prefit=True)
X_new = model.transform(self.X)
self.lazy_predict(X_new, self.Y)
return [[X_new.shape[1], self.predict(X_new, self.Y)]]
def predict(self, X, Y):
X_train, y_train, X_test, y_test = self.train_test_split(X, Y)
# creating a RF classifier
clf = RandomForestClassifier(n_estimators = 100)
# Training the model on the training dataset
# fit function is used to train the model using the training sets as parameters
clf.fit(X_train, y_train)
# performing predictions on the test dataset
y_pred = clf.predict(X_test)
# using metrics module for accuracy calculation
print("ACCURACY OF THE MODEL: {:.2f}%".format(metrics.accuracy_score(y_test, y_pred) * 100))
return metrics.accuracy_score(y_test, y_pred)
def lazy_predict(self, X, Y):
X_train, y_train, X_test, y_test = self.train_test_split(X, Y)
clf = LazyClassifier(verbose=0,ignore_warnings=True, custom_metric=None)
models, predictions = clf.fit(X_train, X_test, y_train, y_test)
print(models)
def train_test_split(self, X, Y):
Y = Y.astype('float')
X = X.astype('float')
X_train, X_test, Y_train, Y_test = model_selection.train_test_split(X, Y, test_size=0.1, random_state=0)
# X_train = X_train.apply(pd.to_numeric)
# X_test = X_test.apply(pd.to_numeric)
return X_train, Y_train, X_test, Y_test