-
Notifications
You must be signed in to change notification settings - Fork 104
/
Copy pathdataloader.lua
110 lines (86 loc) · 3.06 KB
/
dataloader.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
dataloader = {}
local DataLoader = torch.class('dataloader.DataLoader')
function DataLoader:__init(data_paths, labels, batch_size, vx_size, ex_data_ext, full_batches)
self.data_paths = data_paths or error('')
self.labels = labels or error('')
self.batch_size = batch_size or error('')
self.vx_size = vx_size or error('')
self.ex_data_ext = ex_data_ext or error('')
self.full_batches = full_batches or false
assert(#self.data_paths == self.labels:size(1))
self.n_samples = self.labels:size(1)
self.data_idx = 0
end
function DataLoader:getBatch()
local bs = math.min(self.batch_size, #self.data_paths - self.data_idx)
if self.data_idx == 0 then
local cnt = #self.data_paths
while cnt > 1 do
local idx = math.random(cnt)
local tmp = self.data_paths[idx]
self.data_paths[idx] = self.data_paths[cnt]
self.data_paths[cnt] = tmp
if self.labels:nDimension() == 1 then
local tmp = self.labels[idx]
self.labels[idx] = self.labels[cnt]
self.labels[cnt] = tmp
elseif self.labels:nDimension() == 2 then
for col = 1, self.labels:size(2) do
local tmp = self.labels[idx][col]
self.labels[idx][col] = self.labels[cnt][col]
self.labels[cnt][col] = tmp
end
else
error('unknown label dimension')
end
cnt = cnt - 1
end
end
local used_paths = {}
if self.labels:nDimension() == 1 then
self.label_cpu = torch.FloatTensor(bs)
elseif self.labels:nDimension() == 2 then
self.label_cpu = torch.FloatTensor(bs, self.labels:size(2))
else
error('unknown label dimension')
end
for batch_idx = 1, bs do
self.data_idx = self.data_idx + 1
local used_path = self.data_paths[self.data_idx]
table.insert(used_paths, used_path)
self.label_cpu[batch_idx] = self.labels[self.data_idx]
end
self.label_gpu = self.label_gpu or torch.CudaTensor()
self.label_gpu:resize(self.label_cpu:size())
self.label_gpu:copy(self.label_cpu)
if self.ex_data_ext == 'cdhw' then
self.data_cpu = torch.FloatTensor(bs, 1, self.vx_size, self.vx_size, self.vx_size)
oc.read_dense_from_bin_batch(used_paths, self.data_cpu)
self.data_gpu = self.data_gpu or torch.CudaTensor()
self.data_gpu:resize(self.data_cpu:size())
self.data_gpu:copy(self.data_cpu)
elseif self.ex_data_ext == 'oc' then
self.data_cpu = oc.FloatOctree()
self.data_cpu:read_from_bin_batch(used_paths)
self.data_gpu = self.data_cpu:cuda(self.data_gpu)
else
error('unknown ex_data_ext: '..self.ex_data_ext)
end
if (self.full_batches and (#self.data_paths - self.data_idx) < self.batch_size) or
(not self.full_batches and self.data_idx >= #self.data_paths) then
self.data_idx = 0
end
collectgarbage(); collectgarbage()
return self.data_gpu, self.label_gpu
end
function DataLoader:size()
return self.n_samples
end
function DataLoader:n_batches()
if self.full_batches then
return math.floor(self.n_samples / self.batch_size)
else
return math.ceil(self.n_samples / self.batch_size)
end
end
return dataloader