Skip to content

Latest commit

 

History

History
20 lines (17 loc) · 563 Bytes

Euler_Integration_Duffing.md

File metadata and controls

20 lines (17 loc) · 563 Bytes
jupyter
jupytext kernelspec
formats text_representation
ipynb,md
extension format_name format_version jupytext_version
.md
markdown
1.1
1.2.2
display_name language name
Python 3
python
python3

We will look here at numerical integration of second order differential equations.

The physical system we will study is the driven harmonic oscillator and the driven Duffing oscillator. Both can be physically understood as a mass on a spring:

mass_on_spring.png