-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
95 lines (78 loc) · 3.52 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import time
from options.train_options import TrainOptions
from data import CreateDataLoader
from models import create_model
from util.visualizer import Visualizer
import torch
import numpy as np
import os
if __name__ == '__main__':
opt = TrainOptions().parse()
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#training images = %d' % dataset_size)
opt.phase = 'val'
batchSize = opt.batchSize
opt.batchSize = 1 # test code only supports batchSize = 1
data_loader_evaluate = CreateDataLoader(opt)
dataset_evaluate = data_loader_evaluate.load_data()
dataset_size_evaluate = len(data_loader_evaluate)
opt.phase = 'train'
opt.batchSize = batchSize
print('#evaluating images = %d' % dataset_size_evaluate)
model = create_model(opt)
model.setup(opt)
visualizer = Visualizer(opt)
total_steps = 0
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
iter_data_time = time.time()
epoch_iter = 0
for i, data in enumerate(dataset):
iter_start_time = time.time()
if total_steps % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
visualizer.reset()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.set_input(data)
model.optimize_parameters()
# print('max',torch.cuda.max_memory_allocated())
torch.cuda.reset_peak_memory_stats()
if total_steps % opt.display_freq == 0:
save_result = total_steps % opt.update_html_freq == 0
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
if total_steps % opt.print_freq == 0:
losses = model.get_current_losses()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_losses(epoch, epoch_iter, losses, t, t_data)
if opt.display_id > 0:
visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, opt, losses)
if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, total_steps))
model.save_networks('latest')
if hasattr(model, 'ktraj'):
model.save_traj(epoch, total_steps)
iter_data_time = time.time()
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
model.save_networks('latest')
model.save_networks(epoch)
if epoch % opt.val_epoch_freq == 0:
PSNR = []
with torch.no_grad():
for i, data in enumerate(dataset):
iter_start_time = time.time()
model.set_input(data)
model.test()
losses = model.get_current_losses()
for k, v in losses.items():
if k == 'PSNR':
PSNR = np.append(PSNR, v)
print('Validate the model at the end of epoch %d, iters %d psnr%f' % (epoch, total_steps, np.sum(PSNR) / (i + 1)))
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate()